DUNLOP Belting

Conveyor Belt Design Manual

INDEX

Introduction
Dunlop Conveyor Belting Range
Belting Characteristics
Additional Features
SABS Specifications
Conveyor Belt Design
Step By Step Example of Belt Tension Calculation
  Table 1: Table of Symbols
Table 2: Material Characteristics
Table 2(a): Typical Flowability
Determination of Conveyor Capacities
  Table 3: Capacities of Troughed Belt Conveyors
Table 4: Recommended Maximum Belt Speed for Normal Use
Table 5: Recommended Idler Spacing
Table 6: Friction Factors
Table 7: Sag Factor
Table 7(a): Recommended Percentage Sag
Table 8: Estimated Belt Mass
Table 9: Typical Mass of Rotating Parts of Idlers
Table 10: Mass of Moving Parts
Table 11: Drive Factor
Conveyor Belt Selection
  Table 12: Maximum Recommended Operating Tensions
Table 13: Recommended Minimum Pulley Diameters
Table 14: Load Support
Table 15: Maximum Number of Plies Recommended for Correct Empty Belt Troughing
Table 16: Carcass Thickness
Table 17: Mass of Belt Carcass
Table 18: Mass of Covers per mm of Thickness
Rate of Wear Graph
  Table 19: Minimum Belt Top Cover Gauge Guide
Table 20: Belt Modulus
Tabulator Calculations
Sheet 1: Empty Belt
Sheet 2: Fully Loaded Belt
Sheet 3: Non-Declines Loaded
Sheet 4: Declines Loaded
Tension Tabulator
Vertical Curves
Maximum Incline Angle
Graph for Estimating Belt Length/Rolled Belt Diameter
Useful Data Conversion Factors
Conveyor Belting Design Manual

INTRODUCTION

Dunlop Africa Industrial Products is the leading designer and manufacturer of industrial rubber products in South Africa. In fact our belting systems can be seen on some highly productive plants all around the globe.

What more can you expect, when you consider that our belts have been designed and fabricated by some of the best engineers in the industry and from only the finest raw materials.

Using the most current technology, many components have taken years of refinement to attain such technological precision. And every belt is guaranteed to provide maximum performance and maximum life.

And with some 750 000 various specifications available, you can expect to find the right belt for your requirements no matter how specialised.

This manual contains all the elements, formulae and tables you need to specify the exact belt. It has been compiled for your benefit, as a quick reference book for easy selection. If however you have an application not covered in the following pages, please contact Dunlop Africa Industrial Products. A team of experienced and helpful engineers will be pleased to assist you.

Our range of excellent products, competitive pricing and impeccable service, has earned Dunlop Africa Industrial Products the reputation of being the market's first choice.

DUNLOP CONVEYOR BELTING RANGE

Dunlop Africa Industrial Products manufactures the most comprehensive range of conveyor belting in South Africa.

Multi-ply rubber covered conveyor belting

Solid woven PVC belting

Steelcord belting

Flinger belts

BELTING CHARACTERISTICS

XT Rubber Conveyor Belting (conforms to SABS 1173-1977)

Cut resistant XT Rubber Belting

Phoenix Heat Resistant Belting

Super Phoenix Heat Resistant Belting

Delta Hete Heat Resistant Belting

Fire Resistant Belting (conforms to SABS 971-1980)

Woodmaster

Rufftop Belting

Riffled Concentrator Belts

Food Quality Belting

Endless Belting

Flinger Belts

Solid Woven (PVC) Belting (conforms to SABS 971-1980)

Nitrile Covered (PVC) Belting

Steelcord Belting (conforms to SABS 1366-1982)

Fire Resistant Steelcord Belting (Conforms to SABS 1366. 1982 type F).

Oil Resistant Belting

ADDITIONAL FEATURES

  1. Rip Protector

    As an additional feature rip protection can be incorporated into the belt by means of arranging strong nylon fibres transversely or by inclusion of electronic loops. The textile rip protection can be built into the belt in 2-metre lengths at regular intervals or over the full length of the belt.

  2. Shuron Breaker Ply (XT belting)

    For applications where the lump size of the material carried is large and where adverse loading conditions exist, an open weave breaker ply can be incorporated below the top cover as an extra protection for the carcass.

  3. Chevron Breaker (XT belting)

    This incorporates steel tyre cord in a 'V shape, as a rip protection, at intervals over the belt length. Particularly recommended for XT belting where arduous conditions are experienced i.e. slag transportation.

  4. Belt Edges

    Many conveyor belts track off at some stage of their lives, causing edge damage to a greater or lesser extent. Belts can be supplied with either slit or moulded edges.

    Slit edges:
    All-synthetic constructed carcasses have good resistance to edge chafing, due to modern fibre construction In addition there is minimal penetration of moisture to the carcass and therefore no problem with carrying out hot vulcanised splices or repairs.

    Moulded edges:
    A moulded rubber edge can be provided to protect the carcass from acids, chemicals and oils. In most applications a moulded edge is unnecessary as synthetic fibres will not rot or be degraded by mildew.

SABS SPECIFICATIONS

Dunlop Africa Industrial Products conveyor belting complies with the stringent standards as laid down by the SABS.

  1. SABS 1173-1977 - General purpose textile reinforced conveyor belting.
  2. SABS 971-1980 - Fire-resistant textile reinforced conveyor belting.
  3. SABS 1366-1 982- Steelcord reinforced conveyor belting.

The above specifications cover the requirements of the various conveyor belts and are classified according to the minimum full thickness breaking strength of the finished belting in kilonewtons per metre width.

Further information regarding SABS specifications will be supplied on request.

CONVEYOR BELT DESIGN

Introduction

A conveyor belt comprises two main components:

  1. Reinforcement or a carcass which provides the tensile strength of the belt, imparts rigidity for load support and provides a means of joining the belt.
  2. An elastometric cover which protects the carcass against damage from the material being conveyed and provides a satisfactory surface for transmitting the drive power to the carcass.

In selecting the most suitable belt for a particular application, several factors have to be considered:

  1. The tensile strength of the belt carcass must be adequate to transmit the power required in conveying the material over the distance involved.
  2. The belt carcass selected must have the characteristics necessary to:
    1. provide load support for the duty.
    2. conform to the contour of the troughing idlers when empty, and
    3. flex satisfactorily around the pulleys used on the conveyor installation.
  3. The quality and gauge of cover material must be suitable to withstand the physical and chemical effects of the material conveyed.

Belt Tensions

In order to calculate the maximum belt tension and hence the strength of belt that is required, it is first necessary to calculate the effective tension. This is the force required to move the conveyor and the load it is conveying at constant speed. Since the calculation of effective tension is based on a constant speed conveyor, the forces required to move the conveyor and material are only those to overcome frictional resistance and gravitational force.

Mass of Moving Parts

For the sake of simplicity the conveyor is considered to be made up of interconnected unit length components all of equal mass. The mass of each of these units is called the mass of the moving parts and is calculated by adding the total mass of the belting, the rotating mass of all the carrying and return idlers and the rotating mass of all pulleys. This total is divided by the horizontal length of the conveyor to get the mean mass of all the components. At the outset the belt idlers and pulleys have not been selected and hence no mass for these components can be determined. Therefore the mass of the moving parts is selected from the tabulated values to be found in Table 10.

Mass of the load per unit length

As is the case with the components the load that is conveyed is considered to be evenly distributed along the length of the conveyor. Given the peak capacity in ton per hour the mass of the load per unit length is given by:

Q = 0,278 τ

    or    

Q =       τ     
S 3,600S

The effective tension is made up of 4 components

The effective tension is the sum of these four components

Te = Tx + Ty + Tz +Tu

Tx = 9,8G x fx x Lc 

Tz = 9,8Q x H

Various conveyor accessories that add resistance to belt movement are standard on most conveyors. The most common are skirtboards at the loading point and belt scrapers. Other accessories include movable trippers and belt plows.

Tension required to overcome the resistance of skirtboards Tus

Tus 9,8fs x Q x Ls
     S x b     

Tension to overcome the resistance of scrapers

Tuc = A x ρ x fc 

In the case of a belt plow the additional tension required to overcome the resistance of each plow is

Tup = 1,5W

Moving trippers require additional pulleys in the system and therefore add tension. If the mass of the additional pulleys has been included in the mass of moving parts then no additional tension is added. However, if a separate calculation of the tension to overcome the resistance of the additional pulleys is required this can be determined for each additional pulley as follows

Tut = 0,01 do x T1
    Dt     

Corrected length Lc

Short conveyors require relatively more force to overcome frictional resistance than longer conveyors and therefore an adjustment is made to the length of the conveyor used in determining the effective tension. The adjusted length is always greater than the actual horizontal length.

LC = L + 70

The length correction factor is

C =  Lc
 L 

All conveyors require an additional tension in the belt to enable the drive pulley to transmit the effective tension into the belt without slipping. This tension, termed the slack side tension T2, is induced by the take-up system. In the case of a simple horizontal conveyor the maximum belt tension T1 is the sum of the effective tension Te and the slack side tension T2

ie: T1 = Te + T2

T1 is the tight side tension and 12 is the slack side tension

For a more complex conveyor profile that is inclined, additional tensions are induced due to the mass of the belt on the slope. This tension is termed the slope tension 'h and increases the total tension.

Thus T1 = Te + T2 + Th

The slack side tension is determined by consideration of two conditions that must be met in any conveyor. The first condition is that there must be sufficient tension on the slack side to prevent belt slip on the drive. The second condition is that there must be sufficient tension to prevent excessive sag between the carrying idlers.

Minimum tension to prevent slip Tm

At the point of slipping the relationship between T1 and T2 is

T1  = eθ
T2

Since T1 = Te + T2

T2    1    Te
eθ - 1

 

The expression    1    :
eθ - 1

is called the drive factor k. and the value of T2 that will just prevent slip is referred to as the minimum to prevent slip Tm and therefore

Tm = k x Te

Minimum tension to limit belt sag Ts

The tension required to limit sag is dependent on the combined mass of belt and load, the spacing of the carry idlers and the amount of sag that is permissable.

Ts = 9,8Sf x (B + Q) x ld

The value of the slack side tension must ensure that both conditions are met and therefore T2 must be the larger of Tm or Ts.

Slope tension Th

The slope tension is the product of the belt weight and the vertical lift and has its maximum value at the highest point of the conveyor.

Th = 9,8B x H

Unit tension T

The maximum belt tension T1 has as its reference width the full width of the belt. Usually this is converted to the tension per unit of belt width as this is the reference dimension for belt strengths.

T =  T1
W

Absorbed power

The amount of power required by the conveyor is by definition of power equal to the product of the force applied and the speed at which the conveyor belt travels. The force applied is the effective tension and hence the power required at the shaft of the drive pulley/s is

P = Te x S

STEP BY STEP EXAMPLE OF BELT TENSION CALCULATION

As an example of the application of the formulae the belt tensions for the following conveyor will be determined:

Belt width 900 mm
Conveyor Length 250 m
Lift 20 m
Capacity 400 t/hr
Belt speed 1,4 m/s
Material conveyed    ROM coal
Drive 210 degree wrap. Lagged drive pulley.
Take-up Gravity
Idler spacing 1,2 m
Idler roll diameter 127 mm
1.

Determine mass of the load per unit length

Q = 

0,278  τ
S
 =  0,278 x 400

1,4

 =  79,4 kg/m
2. Look up the value of the mass of moving parts in Table 10. From the idler roll diameter and the nature of the material conveyed the application is considered as medium duty. For a 900 mm wide belt the mass of moving parts from Table 10 is 55 kg/m
3.

Calculate the corrected length and the length correction factor.

LC L + 70
= 250 + 70
= 320 m
C = LC
 L 
= 320
250
= 1,28
4.

Tension to move the empty belt.

TX 9,8G x fX x LC
= 9,8 x 55 x 0,022 x 320
= 3794 N
5.

Tension to move the load horizontally.

TX = 9,8Q x fY x LC
= 9,8 x 79,4 x 0,027 x 320
= 6723 N
6.

Tension to lift the load.

TZ = 9,8Q x H
= 9,8 x 79,4 x 20
= 15562 N
7.

No accessories are present and therefore the tension to overcome the resistance of accessories is zero.

8.

Effective tension.

Te = TX + TY + TZ + TU
= 3794 + 6723 + 15562 + 0
= 26079 N
9.

The absorbed power

P = Te x S
= 26079 x 1,4
= 36511W
10.

The slack side tension.
Slack side tension to prevent slip.
The drive factor for 210 degree wrap and lagged pulley with a gravity take-up, as given in Table 11, is 0,38.

Tm = k x Te
= 0,38 x 36079
= 9910 N

Slack side tension to limit sag to 2%. The sag factor for 2% sag is 6,3 and the estimated belt mass for a medium load and 900 mm belt width, as given in Table 8, is 11,1kg/m.

TS = 9,8Sf (B + Q) x ld
= 9,8 x 6,3 x (11,1 + 79,4) x 1,2
= 6705 N

The required slack side tension is the larger of Tm or TS and hence
T2 = 9910 N

11.

Slope tension using the estimated belt mass found in Table 8 for medium load and 900 mm belt width is:

Th = 9,8B x H
= 9,8 x 11,1 x 20
= 2176 N
12.

The maximum belt tension

T1 = Te + T2 + Th
= 26079 + 9910 + 2176
= 38165 N

The maximum belt tension is converted to the unit tension.

Effective tension.

T = T1
W
= 38165
900
= 42,4 N/mm
= 42,4 kN/m

TABLE 1 TABLE OF SYMBOLS

Symbols Description Unit   Symbol Description Unit
A Contact area of scraper blade m2 Sf Sag factor  
B Belt mass per unit length kg/m T Unit tension kN/m
b Width between skirtplates m T1 Maximum belt tension across full belt width N
Bc Edge Distance mm T2 Slack side tension N
C Length correction coefficient   Te Effective tension N
D Material Density kg/m3 Th Slope tension N
Dt Diameter of pulley t mm Tm Minimum tension to prevent slip N
do Diameter of pulley bearings mm Ts Minimum tension to limit sag N
fc Friction coefficient for scrapers   Tu Tension induced in overcoming resistance of accessories  N
fs Friction coefficient for skirtboards   Tuc Tension to overcome resistance of scrapers N
fx Friction coefficient for empty belt   Tus Tension to overcome resistance of skirtboards N
fy Friction coefficient for loaded belt   Tx Tension to move the empty belt N
G Mass of moving parts kg/m Ty Tension to move the load horizontally N
H Change in elevation along conveyor length  m Tz Tension to lift (or lower) the load N
ld Idler spacing (carry idlers) m W Belt width mm
k Drive factor   Coefficient of friction between belt and drive pulley  
L Horizontal length of conveyor m θ Angle of wrap on the drive radians radians
Lc Corrected length of conveyor m ρ Pressure of scraper on the belt N/m2
Ls Length of skirtboard m τ Belt capacity expressed in ton per hour t/hr
P Absorbed power W β Trough angle degree
Q Mass of load per unit length kg/m α Material surcharge angle degree
S Belt Speed m/s      

TABLE 2 MATERIAL CHARACTERISTICS

Material Characteristics Suggested
Grade
Bulk
Density
(t/m3)
Angle of
Surcharge
(degrees)
Max. Rec.
Conv. Slope
(degrees)
Acid phosphate MA N 0,96 10 13
Alum NA N 0,80 25 22
Alumina MA N 0,90 10 12
Aluminium sulphate NA N 0,90 20 17
Ammonium chloride MA N 0,80 10 10
Ammonium nitrate MA N 0,70 25 23
Ammonium sulphate, granular MA N 0,80 10 10
Asbestos ore or rock VA N/M 1,30 20 18
Asbestos shred MA N 0,37 30 30
Ashes, coal, dry MA N 0,60 25 23
Ashes, coal, wet MA N 0,75 25 25
Ashes, fly MA N 0,70 30 23
Ashes, gas producer, wet MA N 1,20 30 28
Asphalt NA N 1,30 30 30
Bagasse NA N/PHR 0,13 30 30
Bark, wood, refuse NA N 0,24 30 27
Barley NA N/GF 0,60 10 12
Barytes, powdered MA N 2,10 10 15
Bauxite, ground, dry VA N/M 1,10 20 18
Bauxite, mine run VA N/M 1,36 20 17
Bauxite, crushed, 75mm VA N/M 1,30 20 20
Beans NA N/GF 0,70 5 7
Beet, pulp, dry NA N/GF 0,22 30 25
Beet, pulp, wet NA N/GF 0,60 30 25
Beets, whole NA N/GF 0,76 20 20
Borax MA N 0,90 20 20
Bran NA N/GF 0,30 10 12
Brewers grain, spent, dry NA N/GF 0,45 30 27
Brewers grain, spent, wet NA N/GF 0,90 30 27
Brick VA N/M 1,76 30 27
Calcium carbide MA N 1,20 20 18
Carbon black, pelletised MA N 0,35 5 5
Carborundum 75mm VA N/M 1,60 10 15
Cashew nuts MA N/GF 0,56 30 22

Cement, portland

NA N/PHR 1,50 25 20

Cement, portland, aerated

NA N/PHR 1,06 5 10

Cement clinker

MA N/DHR 1,36 25 18

Chalk, lumpy

MA N 1,30 10 15

Chalk, 100 mesh and under

MA N 1,10 25 28
Charcoal MA N 0,35 25 22
Chrome ore HA/S N 2,10 10 17

Cinders, blast furnace

MA N/M 0,90 10 18

Cinder, coal 

MA N 0,65 20 20

Clay, calcined 

MA N 1,44 25 22

Clay, dry, fines

MA N 1,76 20 22

Clay, dry, lumpy

VA N 1,10 20 20

Coal, anthracite, 3mm and under 

NA N/PVC 0,96 20 18

Coal, anthracite, sized 

NA N/PVC 0,90 10 16

Coal, bituminous, mined 50 mesh and under 

NA N/PVC 0,83 30 24

Coal, bituminous, mined and sized 

NA N/PVC 0,80 20 16

Coal, bituminous, mined, run of mine

MA N/PVC 0,90 25 18

Coal, bituminous, mined, slack 12mm and under 

MA N/PVC 0,75 25 22

Coal, lignite 

MA N/PVC 0,75 25 22

Cocoa beans 

NA N/GF 0,56 10 12

Coke, loose 

VA N/M 0,48 30 18

Coke, petroleum, calcined 

VA N/M 0,64 20 20

Coke, breeze, 6mm and under 

VA N/M 0,48 20 22

Concrete, 100mm lumps 

VA N/M 2,10 10 18

Concrete wet 

VA N/M 2,20 24 18

Copper ore 

VA N/M 2,17 20 20

Copper sulphate 

VA N/M 1,30 20 17

Corn, ear 

NA N/GF 0,90 25 18

Corn, shelled 

NA N/GF 0,70 10 10

Cornmeal

NA N/GF 0,65 20 22

Cottonseed cake 

NA N/GF 0,67 20 20

Gullet 

HA/S M 1,60 20 20

Dolomite 

VA N/M 1,60 18 20

Earth, as dug, dry 

VA N/M 1,20 20 20

Earth, wet, with clay

MA N 1,70 30 23

Feldspar 

VA N/M 1,44 25 17

Flaxseed

MA O 0,70 10 12

Flour, wheat

NA N/GF 0,60 30 21

Fluorspar

MA N 1,70 30 20

Foundry sand, old sand cores etc.

VA M/PHR 1,36 25 20

Fullers earth, dry

MA N 0,50 10 15

Fullers earth, oily

MA O 1,00 20 20

Glass batch

HA/S M 1,44 10 22

Grain, distillery, spent dry

NA N/GF 0,48 10 15
Granite, broken, 75mm lumps VA N/M 1,44 10 18
Graphite, flake NA N 0,65 10 15

Gravel, bank run

VA N/M 1,52 25 20

Gravel, dry, sharp 

VA N/M 1,52 20 16

Gravel, pebbles 

VA N/M 1,52 10 12

Gypsum, dust, not-aerated 

MA N 1,50 20 20

Gypsum, dust, aerated 

MA N 1,04 30 23

Gypsum, 12mm screened 

MA N 1,20 25 21

Gypsum, 75mm lumps 

MA N 1,20 10 15

Illmenite ore 

MA N 2,40 10 18

Iron ore, coarse crushed 

VA N/M 3,00 20 18

Iron ore, crushed fine 

VA N/M 3,50 20 18

Kaolin clay, 75mm and under

MA N 1,00 20 19

Lead ores 

MA N 3,80 10 15

Lead oxide, heavy 

MA N 2,40 25 20

Lead oxide, light 

MA N 1,20 25 20

Lignite, air dried 

MA N 0,80 10 18

Lime, ground, 3mm and under 

NA N 1,00 30 23

Lime, hydrated 

NA N 0,60 25 21

Lime, pebble 

MA N 0,90 10 17

Limestone, agricultural 3mm and under 

MA N 1,10 10 20

Limestone, crushed

MA N 1,40 25 18

Linseed cake 

NA OR/PVC 0,80 20 15

Linseed meal

NA OR/PVC 0,43 20 20

Litharge, pulverized (lead oxide) 

MA N 3,60 10 15

Magnesium chloride 

MA N 0,53 30 23

Magnesium sulphate 

MA N 1,10 10 15

Manganese ore

VA N/M 2,15 25 20

Manganese sulphate 

MA N 1,10 10 15

Marble, crushed 12mm and under

VA N/M 1,40 10 15

Mica, ground 

MA N 0,22 20 23

Mica, pulverized 

MA N 0,22 10 15

Mica, flakes 

MA N 0,32 5 8

Molybdenite, powdered 

MA N 1,70 20 25

Mortar, wet 

VA N/M 2,20 24 18

Nickel-cobalt 

VA N/M 1,80 10 20

Oats 

NA GF/PVC 0,42 10 10

Peanuts in shells 

NA N 0,27 10 8

Peanuts, shelled 

NA GF/PVC 0,65 10 8

Peas, dried 

NA GF/PVC 0,75 5 8
Phosphate, triple super ground fertilizer MA N/OR/PVC 0,80 20 18
Phosphate rock, broken, dry VA N/M 2,00 20 18

Phosphate rock, pulverized

VA N/M 2,10 25 18

Potash ore 

MA N 1,30 10 15

Pumice, 3 mm and under 

MA N 0,67 30 22

Pyrites, iron, 50 - 75mm in lumps 

VA N/M 2,25 20 17

Pyrites, pellets 

VA N/M 2,00 10 15

Quartz 

HA/S N/M 1,36 10 15

Rice 

NA GF/PVC 0,65 5 8

Rock, crushed

HA/S N/M 2,15 20 18

Rubber, pelletised

MA N 0,80 20 22

Rubber, reclaim

NA N 0,45 20 18

Rye

NA GF/PVC 0,70 10 8

Salt, common dry, coarse

MA N/GF/PVC 0,75 10 20

Salt, common dry, fine

MA GF/PVC 1,20 10 11

Sand, bank, damp 

VA N/M 1,90 30 22

Sand, bank, dry

VA N/M 1,60 20 18

Sand, foundry, prepared

VA N/M 1,36 30 24

Sand, foundry, shakeout

VA N/M/PHR 1,50 25 22

Sand, Silica, dry

VA N/M 1,50 10 12

Sand, core

VA N/M 1,04 25 26

Sandstone, broken

VA N/M 1,44 20 20

Sawdust

NA N/OR/PVC/W 0,20 25 22

Shale, broken

MA N 1,50 10 18

Shale, crushed

MA N 1,40 25 22

Sinter

VA N/M/PHR 1,80 10 15

Slag, blast furnace, crushed

VA M/PHR/DHR 1,36 10 10

Slag, furnace, granular, dry

VA M/PHR/DHR 1,00 10 15

Slag, furnace, granular, wet

VA N/M 1,50 30 22

Slate

MA N 1,36 20 18

Soap, beads or granules

NA N/PVC 0,32 10 12

Soap, chips

NA N/PVC 0,32 10 18

Soda ash, briquettes

MA N 0,80 10 7

Soda ash, heavy

MA N 0,96 20 18

Soda ash, light

MA N 0,43 25 22

Sodium nitrate

MA N 1,20 10 11

Sodium phosphate

MA N 0,90 10 16

Soyabeans, cracked

NA GF/PVC 0,56 20 18

Soyabeans, whole

NA GF/PVC 0,77 10 14

Starch

NA GF 0,60 10 12

Steel trimmings

HA/S M 2,40 20 18

Sugar, granulated

NA GF 0,83 10 15

Sugar, raw, cane

MA N 0,96 20 22

Sulphate powdered

MA N 0,90 10 21

Talc, powdered

NA N 0,90 10 12

Titanium ore

VA N/M 2,40 10 18

Titanium sponge

MA N 1,04 30 25

Traprock

VA N/M 1,60 20 18

Triple super phosphate

MA N/OR/PVC 0,80 20 18

Vermiculite, expanded

MA N 0,25 20 23

Vermiculite, ore

MA N 1,20 20 20

Walnut shells, crushed

NA GF 0,65 20 20

Wheat

NA N/GF/PVC 0,77 10 12

Woodchips

NA OR/W 0,32 30 27

Zinc ore, crushed

HA/S M 2,60 25 22

Zinc ore, roasted

HA/S SPHR/DHR 1,76 25 25

Characteristics

Key: HA/S - Highly abrasive/sharp
  MA - Mildly abrasive
  NA - Non-abrasive
  VA - Very abrasive

Cover Grade

Code: N - SASS 1173 NH polyisoprine
  M - Higher natural rubber content SASS 1173
  OR - Oil resistant
  GF - Grey Food
  PHR - Phoenix Heat Resistant
  SPHR - Super Phoenix heat resistant
  W - Wood master
  DHR - Delta Hete heat resistant
  PVC - Polyvinylchloride
  FR - Fire resistant SASS 971

TABLE 2(a) TYPICAL FLOWABILITY

Angle of
Surcharge α
Angle of
Repose
Material Characteristics
0° - 19° Uniform Size
10° 20° - 29° Rounded, dry ,medium weight
20° 30° - 34° Granular lumpy (Coal, Clay)
25° 35° - 39° Coal, stone, ores
30° 40° - 45° Irregular (wood chips)

Determination of Conveyor Capacities

The capacity of a troughed belt is a function of:

  1. The cross sectional area of the load which can be carried without spillage.
  2. The belt speed.
  3. The material density.

The cross sectional area is influenced by many factors including the flowability of the material, the angle of surcharge and the incline angle at the load point of the conveyor. To achieve optimum load area the loading chutes must be designed to ensure the most advantageous initial load shape and this can only be achieved if:

  1. The load is placed centrally on the belt.
  2. The material is delivered in the direction of belt travel and at a speed approaching that of the belt.
  3. The angle of incline at the load area must be less than 1 ~O,

To ensure that the optimum load shape is maintained along the entire belt length:

  1. The idler pitch should be such as to limit sag to acceptable levels.
  2. The belt must be trained properly.
  3. The lump size in relation to belt width must be within the recommended limits.
  4. The belt must give adequate support to the load.

Under ideal conditions the cross sectional load area is:

At = (Ab + As) / 106

Where

Ab = (0,371W + 6,3 + M x cosβ) (M x sinβ)

As ( 0,186W + 3,2 + M x cosβ )2 ( πα  -  sin2α )
sinα 180 2

M = 0,3145W - 3,2 - Bc

W - Belt width (mm)
Bc- Edge distance (mm)
β - Iroughing angle (degree)
α - Material surcharge angle (degree)
At - Cross sectional load area (m2)

The belt capacity in ton/hour is
Capacity = 3,6At x D x S

Where

D - Material Density (kg/m3)
S - Belt speed (m/s)

TABLE 3 CAPACITIES OF TROUGHED BELT CONVEYORS IN TON/HOUR

Belt
Width
mm
Recommended
Max. Lump Size
Trough
Angle
Degrees
Area of
Load
m2
Speed m/s
Sized
mm
Unsized
mm
0,5 0,8 1,2 1,6 2,0 2,5 3,0
600 125 200 20 0,033 59 95 142 190 236 297 357
27 0,037 66 106 160 213 266 333 400
30 0,038 69 110 164 218 274 342 410
35 0,040 72 115 173 230 288 360 432
45 0,042 76 121 181 242 303 378 436
750 150 250 20 0,054 97 156 233 311 389 486 583
27 0,060 109 173 259 346 432 540 648
30 0,062 112 179 268 357 446 558 670
35 0,065 117 187 281 375 468 585 702
45 0,068 122 196 294 392 490 612 734
900 175 300 20 0,080 144 230 346 461 576 720 864
27 0,090 162 259 389 518 648 810 972
30 0,092 166 265 397 530 662 828 994
35 0,096 173 276 415 553 691 864 1037
45 0,101 182 291 436 582 727 909 1091
1050 200 350 20 0,111 200 320 480 639 799 1000 1199
27 0,124 223 357 536 714 839 1116 1339
30 0,128 230 369 553 737 922 1152 1382
35 0,134 241 386 579 772 965 1206 1447
45 0,140 252 403 605 806 1008 1260 1512
1200 250 400 20 0,147 265 423 635 847 1058 1323 1588
27 0,165 297 475 713 950 1188 1485 1782
30 0,170 306 490 734 979 1224 1530 1836
35 0,178 320 513 769 1025 1282 1602 1922
45 0,186 335 536 804 1071 1339 1674 2009
1350 275 500 20 0,189 340 544 816 1089 1361 1701 2041
27 0,211 380 608 912 1215 1519 1899 2279
30 0,217 391 625 937 1250 1562 1953 2344
35 0,227 409 654 981 1308 1634 2043 2452
45 0,238 428 685 1028 1371 1714 2142 2570
1500 300 600 20 0,235 423 676 1015 1357 1692 2115 2538
27 0,263 473 757 1136 1515 1894 2367 2840
30 0,271 488 780 1171 1561 1951 2439 2927
35 0,283 509 815 1223 1630 2038 2547 3056
45 0,296 533 852 1279 1905 2131 2664 3197
1650 350 700 20 0,286 515 824 1236 1649 2059 2574 3089
27 0,321 578 924 1387 1849 2311 2889 3467
30 0,330 594 950 1426 1901 2367 2970 3564
35 0,345 621 994 1490 1987 2484 3105 3726
45 0,361 650 1040 1560 2079 2599 3249 3899
1800 350 700 20 0,343 617 988 1482 1976 2470 3087 3704
27 0,384 691 1106 1659 2212 2765 3456 4147
30 0,395 711 1138 1706 2275 2844 3555 4266
35 0,413 743 1189 1784 2379 2976 3717 4460
45 0,432 778 1244 1866 2488 3110 3888 4666
2100 350 700 20 0,472 850 1359 2039 2719 3398 4248 5098
27 0,528 950 1521 2281 3041 3802 4752 5702
30 0,543 977 1564 2346 3128 3910 4887 5864
35 0,568 1022 1636 2454 3272 4090 5112 6134
45 0,594 1069 1711 2566 3421 4277 5346 6415
2200 350 700 20 0,519 934 1495 2245 2989 3737 4671 6505
27 0,581 1046 1673 2510 3347 4183 5229 6275
30 0,598 1076 1722 2583 3444 4306 5382 6458
35 0,625 1125 1800 2700 3600 4500 5625 6750
45 0,654 1161 1858 2786 3715 4644 5805 6966

TABLE 4 RECOMMENDED MAXIMUM BELT SPEEDS FOR NORMAL USE (METRES PER SECOND)*

Belt Width
(mm)
Grain or Other
Free Flowing Material
Run of Mine
Coal and Earth +
Hard Ores and Stone -
Primary Crushed ++
300 2,5 1,5 1,5
400 2,5 2,0 1,8
500 3,0 2,0 1,8
600 3,0 2,5 2,3
750 3,6 3,0 2,8
900 4,0 3,3 3,0
1050 4,0 3,6 3,0
1200 4,6 3,6 3,3
1350 5,0 3,6 3,3
1500 5,0 3,6 3,3
1800   4,0 3,8
2000 and over   4,0 3,8

* These speeds are intended as guides to general practice and are not absolute.
+ Moderately abrasive materials.
++ Very abrasive materials.

Note: In the case of belts loaded on inclines of 100 or more it may be necessary to reduce the above speeds in order to achieve maximum capacity.

TABLE 5 RECOMMENDED IDLER SPACING

Belt Width
(mm)
Troughing Idler - (m) Return Idlers
(m)
Bulk Density of Material (t/m3)
0,5 0,8 1,2 1,6 2,0 2,5 3,0
450 1,5 1,5 1,5 1,4 1,4 1,4 1,4 3
600 1,5 1,5 1,5 1,4 1,4 1,2 1,2 3
750 1,5 1,4 1,4 1,2 1,2 1,2 1,0 3
900 1,4 1,4 1,2 1,2 1,0 1,0 1,0 3
1050 1,2 1,2 1,0 1,0 1,0 1,0 0,9 3
1200 1,2 1,2 1,0 1,0 1,0 0,9 0,9 3
1350 1,2 1,0 1,0 1,0 0,9 0,9 0,9 3
1500 1,2 1,0 1,0 1,0 0,9 0,9 0,9 3
1650 1,2 1,0 1,0 0,9 0,9 0,9 0,9 3
1800 1,2 1,0 1,0 0,9 0,9 0,9 0,8 3
2000 and over 1,0 1,0 0,9 0,9 0,9 0,8 0,8 3

TABLE 6 FRICTION FACTORS

Symbol Description Value of the friction factor
Normal operating
conditions.
Horizontal length
up to
250 meters.
Normal operating
conditions.
Horizontal length
more than
250 meters.
Very well aligned
structure with no
tilted idlers etc.
Horizontal length
more than
500 meters.
Regenerative
conveyor.
fC Friction coefficient for scrapers 0,600 0,600 0,600 0,600
fS Friction coefficient for skirtboards 0,650 0,650 0,650 0,650
fX Friction coefficient for empty belt 0,022 0,020 0,020 0,018
fY Friction coefficient for loaded belt 0,027 0,022 0,020 0,018

TABLE 7 SAG FACTOR

Percentage
Sag
Sag Factor
Sf
3% 4,2
2% 6,3
1,5% 8,4

TABLE 7(a) RECOMMENDED PERCENTAGE SAG

Trough Angle
(degree)
Fine
Material
Lumps up to
max lump size
Max Lump
Size
20 3% 3% 3%
35 3% 2% 2%
45 3% 2% 1,5%

TABLE 8 ESTIMATED BELT MASS B

Belt Width
(mm)
Operating Conditions
Light Duty
(kg/m)
Medium Duty
(kg/m)
Heavy Duty
(kg/m)
500 4,1 6,2 10,3
600 5,0 7,4 12,3
750 6,2 9,3 15,5
900 7,4 11,1 18,5
1050 8,6 13,0 21,6
1200 9,8 14,8 24,7
1350 11,0 16,7 27,8
1500 12,3 18,6 30,9
1650 13,5 20,5 33,9
1800 14,7 22,3 37,0
2100 17,2 26,0 43,3
2200 18,0 27,3 45,3

Note:

The values given in the table are estimated values for use in the calculation of maximum belt operating tension necessary to make the correct belt selection. When the belt specification has been determined, the mass should be checked more accurately from Table 17. If the actual mass of the specification differs considerably from the approximate value obtained from the table the tension calculation should be rechecked using the more accurate belt mass.

TABLE 9 TYPICAL MASS OF ROTATING PARTS OF IDLERS (kg/m)

Belt Width 3 Roll Carry Idlers Return Idlers 3 Roll Impact Idlers
Roll Dia Roll Dia Roll Dia
102 127 152 102 127 152 133 159
450 8,0 10,5 13,1 6,0 7,7 9,4 8,8 11,5
500 8,5 11,1 13,9 6,5 8,4 10,1 9,3 12,2
600 9,5 12,4 15,4 7,5 9,6 11,6 10,4 13,6
750 11,0 14,2 17,6 9,0 11,4 13,9 12,1 15,6
900 12,5 16,1 19,9 10,6 13,3 16,1 13,8 17,7
1050 14,0 18,0 22,2 12,1 15,2 18,4 15,4 18,8
1200 15,5 19,9 24,4 13,6 17,1 20,6 17,1 21,9
1350 17,0 21,8 26,6 15,1 19,0 22,9 18,7 24,0
1500 18,5 23,6 28,9 16,6 20,8 25,1 20,3 26,0
1650 20,0 25,5 31,2 18,1 22,7 27,4 22,0 28,9
1800 21,6 27,4 33,4 19,6 25,6 29,6 23,8 30,1
2100 24,6 31,2 37,9 22,6 28,4 34,2 27,1 34,3
2200 25,6 32,4 39,4 23,6 29,6 35,7 28,2 35,6
2400 27,6 34,9 42,4 25,7 32,1 38,7 30,4 38,4

TABLE 10 MASS OF MOVING PARTS G

Belt Width
(mm)
Mass of Moving Parts (kg/m)
Light Duty
102mm Idlers
Light Belt
Medium Duty
127mm Idlers
Moderate Belt
Heavy Duty
152mm Idlers
Heavy Belt
Extra Heavy Duty
152mm Idlers
Steel Cord Belt
450 23 25 33  
600 29 36 45 49
750 37 46 57 63
900 45 55 70 79
1050 52 64 82 94
1200 63 71 95 110
1350 70 82 107 127
1500   91 121 143
1650   100 132 160
1800     144 178
2100     168 205
2200     177 219

TABLE 11 DRIVE FACTOR k

Angle of
Belt Wrap
at Drive
Type
of
Drive
Screw
Take-up
Gravity or Automatic
Winch Take-up
Bare
Pulley
Lagged
Pulley
Bare
Pulley
Lagged
Pulley
150 Plain 1,5 1,0 1,08 0,670
160 Plain 1,4 0,9 0,99 0,600
170 Plain 1,3 0,9 0,91 0,550
180 Plain 1,2 0,8 0,84 0,500
190 Snubbed 1,1 0,7 0,77 0,450
200 Snubbed 1,0 0,7 0,72 0,420
210 Snubbed 1,0 0,7 0,67 0,380
220 Snubbed 0,9 0,6 0,62 0,350
230 Snubbed 0,9 0,6 0,58 0,320
240 Snubbed 0,8 0,6 0,54 0,300
340 Dual 0,5 0,4 0,29 0,143
360 Dual 0,5 0,4 0,26 0,125
380 Dual 0,5 0,3 0,23 0,108
400 Dual 0,5 0,3 0,21 0,095
420 Dual 0,4 0,3 0,19 0,084
440 Dual     0,17 0,074
460 Dual     0,15 0,064
480 Dual     0,14 0,056

Notes:

  1. When calculating the driving tension required for dual drive units, the drive factor selected must correspond to the total angle of driving wrap.

  2. The drive factors quoted for gravity or automatic take-up systems are minimum values based on the relationship between angle of wrap and coefficient of friction between belt and drum at the point of slip. In the case of screw take-up units, an adjustment has been made to the drive factor to allow for the extra tension which may be induced in the belt either:

    1. to compensate for the effect of belt elongation when the material is loaded.

    2. due to the difficulty in measuring the amount of tension applied.

  3. In those cases where an electrically or hydraulically loaded winch type take-up is used, where the induced tension can be preset and controlled, the drive factor should be selected to correspond with a gravity take-up system.

CONVEYOR BELT SELECTION

Belt carcass selection criteria
In selecting the optimum belt construction for a given application it is necessary to consider the following:

Tensile strength
The belt class required is that which has an operating tension greater than or equal to the calculated maximum unit tension T. (Table 12).

Load support
Choose the lowest class which meets the tensile strength requirement. Looking at Table 14, determine which load category best describes the load being conveyed i.e. A, B, C, D or E category load. The value obtained at the intersection of the belt specification row and the load category column gives the maximum width at which that belt specification can be used.

Number of plies for troughability
The maximum number of plies allowable, in order to ensure that the empty belt will conform to the contour of the troughing idlers, must be checked referring to Table 15. For a particular belt class the value shown at the intersection of the belt width column and troughing angle row, is the maximum number of plies that should be used.

Minimum pulley diameters
If the size of the pulleys is already determined, the belt construction provisionally selected from the previous considerations can be checked against the relevant pulley diameters for suitability. For a new installation, the pulley diameters should be equal to or larger than those given in Table 13 (It should be noted that, in this context, the diameters quoted refer to the minimum pulleys around which the particular belt construction will flex satisfactorily. The conveyor designer should also take into account the gearbox ratio and required belt speed when selecting the drive pulley diameter.)

Gauge of covers required
The correct gauge of cover necessary to give protection to the belt carcass from material impact and wear must be determined by consideration of the size and density of the material to be handled. (Table 19).

Additional Information

Belt modulus
Refer to Table 20 for belt modulus.

Belt mass
The mass of a particular belt construction can be determined by adding the carcass mass found in Table 17 to the combined mass of covers found in Table 18. This will give the mass per unit area. To calculate the mass per unit length multiply by the belt width in metres.

Belt thickness
The belt thickness can be obtained from the information given in Table 16.

TABLE 12 MAXIMUM RECOMMENDED OPERATING TENSIONS

Textile Reinforced Multi-ply and
Solid Woven Carcass Conveyor Belting
Steelcord Reinforced Conveyor Belting
Belt
Class
Max recommended
Operating Tension (kN/m)
Belt
Class
Max recommended
Operating Tension (kN/m)
160 16,0    
200 20,0    
250 25,0    
315 31,5    
400 40,0    
500 50,0 St 500 75,0
630 63,0 St 630 94,0
800 80,0 St 800 120,0
1000 100,0 St 1000 150,0
1250 125,0 St 1250 187,5
1600 160,0 St 1600 240,0
2000 200,0 St 2000 300,0
    St 2500 375,0
    St 3150 472,0
    St 4000 600,0
    St 5000 750,0
    St 6300 945,0

TABLE 13 RECOMMENDED MINIMUM PULLEY DIAMETERS (mm)

Belt Class Pulley Type Textile Reinforced Rubber Belting Solid Woven
PVC Belting
Steelcord
Reinforced
Rubber Belting
No. of Plies
2 3 4 5
160 A 315          
B 250          
C 200          
200 A 315          
B 250          
C 200          
250 A 315 400        
B 250 315        
C 200 250        
315 A 315 400     400  
B 250 315     315  
C 200 250     250  
400 A 400 500 630   400  
B 315 400 500   315  
C 250 315 400   250  
500 A 500 500 630 630 500 500
B 400 400 500 500 400 400
C 315 315 400 400 315 315
630 A 500 630 630 800 500 500
B 400 500 500 630 400 400
C 315 400 400 500 315 315
800 A 630 800 800 800 500 500
B 500 630 630 630 400 400
C 400 500 500 500 315 315
1000 A 630 800 1000 1000 630 500
B 500 630 800 800 500 400
C 400 500 630 630 400 315
1250 A   1000 1000 1250 800 630
B   800 800 1000 630 500
C   630 630 800 500 400
1600 A   1000 1250 1250 1000 800
B   800 1000 1000 800 630
C   630 800 800 630 500
2000 A     1250 1400 1000 800
B     1000 1250 800 630
C     800 1000 630 500
2500 A           1000
B           800
C           630
3150 A           1250
B           1000
C           800
4000 A           1250
B           1000
C           800
5000 A           1400
B           1250
C           1000
6300 A           1400
B           1250
C           1000

 

Pulley types   Examples
A High tension pulleys Wrap exceeding 45°   Head, drive & tripper
B Low tension pulleys Wrap exceeding 45°   Tail, take-up, Take-up bend
 

or

   
  High tension pulleys Wrap up to 45°   High tension snub or bend pulleys
C Low tension pulleys Wrap up to 45°   Low tension snub or bend pulleys

TABLE 14 LOAD SUPPORT

Recommended maximum belt width (mm) for correct load support. Multi-ply textile reinforced rubber belting.

Belt Spec A
Light Duty
Up to 800 kg/m3
 - 25mm Lumps
B
Light to Medium Duty
Up to 1200 kg/m3
 - 50mm Lumps
C
Medium Duty
Up to 1600 kg/m3
 - 100mm Lumps
D
Heavy Duty
Up to 2400 kg/m3
 - 250mm Lumps
E
Extra Heavy Duty
Up to 3000 kg/m3
 + 250mm Lumps
160/2 750 600 500 400 Not Recommended
200/2 750 600 600 4500 Not Recommended
250/2 900 750 750 600 500
250/3 1050 900 750 600 600
315/2 900 900 750 600 500
315/3 1200 1050 1050 750 600
400/2 1200 1050 1050 900 750
400/3 1200 1050 1050 900 750
400/4 1500 1500 1350 900 750
500/2 1200 1200 1200 1050 900
500/3 1350 1200 1200 1050 900
500/4 1650 1500 1350 1200 900
500/5 1800 1800 1800 1500 1350
630/2 1200 1200 1200 1050 900
630/3 1650 1350 1200 1050 1050
630/4 1650 1500 1350 1200 1050
630/5 2100 2100 1800 1650 1350
800/2 1650 1500 1500 1350 1200
800/3 1800 1650 1500 1350 1200
800/4 2100 1800 1650 1500 1350
800/5 2400 2400 2100 1800 1500
1000/2 1800 1650 1500 1350 1200
1000/3 2100 1650 1500 1350 1200
1000/4 2400 1800 1800 1500 1350
1000/5 2400 2400 2200 1800 1500
1250/3 2100 1800 1800 1350 1200
1250/4 2400 2200 2200 1650 1500
1250/5 2400 2400 2400 1800 1800
1600/3 2400 2400 1800 1650 1650
1600/4 2400 2400 2200 1800 1800
1600/5 2400 2400 2400 2200 1800
2000/4 2400 2400 2400 1800 1800
2000/5 2400 2400 2400 2200 2100

TABLE 15 MAXIMUM NUMBER OF PLIES RECOMMENDED FOR CORRECT EMPTY BELT TROUGHING

Belt
Class
Belt Width (mm) Troughing
Angle
350 400 450 500 600 750 900 1050 1200 1350 1500 1650 1800 2100 2200
160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20°
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 35°
200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20°
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 35°
250 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 20°
- 2 2 2 3 3 3 3 3 3 3 3 3 3 3 35°
315 - 2 3 3 3 4 4 4 4 4 4 4 4 4 4 20°
- 2 3 3 3 3 4 4 4 4 4 4 4 4 4 35°
400 - 2 4 4 4 4 4 4 4 4 4 4 4 4 4 20°
- - 3 3 3 4 4 4 4 4 4 4 4 4 4 35°
500 - - 4 4 4 4 4 4 4 4 4 4 4 4 4 20°
- - 3 3 3 4 4 4 4 4 4 4 4 4 4 35°
630 - - 4 4 4 4 4 4 4 4 4 4 4 4 4 20°
- - 2 2 3 4 4 4 4 4 4 4 4 4 4 35°
800 - - 3 3 4 4 4 4 4 4 4 4 4 4 4 20°
- - 2 2 3 4 4 4 4 4 4 4 4 4 4 35°
1000 - - - - 4 4 4 4 4 4 4 4 4 4 4 20°
- - - - 2 3 4 4 4 4 4 4 4 4 4 35°
1250 - - - - 4 4 4 4 4 4 4 4 4 4 4 20°
- - - - 3 3 4 4 4 4 4 4 4 4 4 35°
1600 - - - - 3 4 4 4 4 4 4 4 4 4 4 20°
- - - - - 3 4 4 4 4 4 4 4 4 4 35°
2000 - - - - - 4 5 5 5 5 5 5 5 5 5 20°
- - - - - - 4 4 5 5 5 5 5 5 5 35°

TABLE 16 CARCASS THICKNESS (mm)

Belt Class Textile Reinforced Rubber Belting
No. of Plies
Solid Woven
PVC Belting
Steelcord Reinforced
Rubber Belting
2 3 4 5
160 2,0          
200 2,6          
250 2,7 3,2        
315 2,8 3,5     4,9  
400 3,0 3,8 5,0      
500 4,0 4,2 5,2 5,9 5,9 3,2
630 4,3 5,2 5,8 6,6 6,2 3,2
800 5,0 6,0 6,9 7,2 6,9 3,7
1000 5,7 6,5 7,6 8,5 7,4 3,7
1250   8,4 9,6 10,0 8,4 3,7
1600   9,5 10,5 11,0 9,9 5,4
2000     12,0 13,0 12,4 5,4
2500           7,0
3150           8,0
4000           9,0
5000           11,0
6300           12,0

Add the thickness of the covers to get the total belt thickness

TABLE 17 MASS OF BELT CARCASS (kg/m2)

Belt Class Textile Reinforced Rubber Belting
No. of Plies
Solid Woven
PVC Belting
With Nominal
PVC Coating
Steelcord Reinforced
Rubber Belting
2 3 4 5
160 2,8          
200 3,0          
250 3,1 3,9        
315 3,4 4,2     9,0  
400 3,7 4,4 6,0   9,4  
500 4,3 4,8 6,4 7,5 9,7 7,5
630 4,8 5,2 6,8 8,0 10,5 7,7
800 5,6 6,4 7,2 8,5 11,0 8,2
1000 6,5 7,3 8,5 9,0 11,7 9,0
1250   8,9 9,7 10,5 13,0 9,7
1600   10,7 11,5 12,5 15,0 13,4
2000     14,2 14,9 18,0 15,3
2500           18,7
3150           22,4
4000           28,4
5000           35,1
6300           38,7

To obtain total belt mass add the mass of the combined covers from Table 18.
The mass per unit length is determined by multiplying the total mass by the belt width in metres.

TABLE 18 MASS OF COVERS PER mm OF THICKNESS (kg/m2)

Grade of Cover Mass
(kg/m2)
N 1,14
M 1,10
OR 1,41
GF 1,37
FR 1,27
  
Grade of Cover Mass
(kg/m2)
PHR 1,17
SPHR 1,21
DHR 1,34
PVC 1,37
Nitrile 1,32

RATE OF WEAR VS THICKNESS OF COVER

The rate at which a belt cover wears is related to the thickness of the cover and to the impact energy imparted by material lumps.

Impact energy can be calculated for any material of known lump mass and vertical velocity.

γ - ω x νv  J

γ - Impact Energy (J)
ω - Mass of lump (kg)
νv - Verticle velocity (m/s)

TABLE 19 MINIMUM BELT TOP COVER GAUGE GUIDE

Cycle
time
s
Material Class A

Non abrasive material
such as lime, charcoal,
wood chips, bituminous
coal grain

Material Class B

Abrasive material
such as salt, anthracite
coal, phosphate rock,
limestone, fullers earth

Material Class C

Very abrasive material
such as slag, copper ore,
sinter, coke sand,
flue dust

Material Class D

Very sharp abrasive material
such as quartz, some ores,
foundry refuse, glass batch,
iron borings

Lump size (mm) Lump size (mm) Lump size (mm) Lump size (mm)
dust
to
12
12
to
50
50
to
150
150
and
over
dust
to
12
12
to
50
50
to
150
150
and
over
dust
to
12
12
to
50
50
to
150
150
and
over
dust
to
12
12
to
50
50
to
150
150
and
over
12 2,0 3,0 6,0 8,0 3,0 6,0 10,0 10,0 6,0 10,0 10,0 10,0 8,0 10,0 10,0 10,0
25 2,0 2,5 3,0 5,0 2,5 3,0 6,0 10,0 3,0 6,0 10,0 10,0 4,0 8,0 10,0 10,0
40 1,0 2,5 3,0 5,0 2,5 3,0 4,0 5,0 3,0 3,0 6,0 10,0 3,0 4,0 8,0 10,0
60 1,0 2,5 3,0 5,0 2,5 3,0 4,0 5,0 3,0 3,0 5,0 6,0 3,0 3,0 6,0 10,0
90 1,0 2,5 3,0 5,0 2,5 3,0 4,0 5,0 3,0 3,0 5,0 5,0 3,0 3,0 6,0 6,0
120 1,0 2,5 3,0 5,0 2,5 3,0 4,0 5,0 3,0 3,0 4,0 5,0 3,0 3,0 5,0 6,0
180 1,0 2,5 3,0 5,0 2,5 3,0 4,0 5,0 3,0 3,0 4,0 5,0 3,0 3,0 5,0 6,0
240+ 1,0 2,5 3,0 5,0 2,0 3,0 4,0 5,0 3,0 3,0 4,0 5,0 3,0 3,0 5,0 6,0

Cycle time - 2L/S

TABLE 20 BELT MODULUS (kN/m)

Belt Class Multi-ply
Textile
Reinforced
Belting
Solid Woven
PVC Belting
Steelcord
Reinforced
Rubber Belting
160 1060    
200 1330    
250 1660    
315 2070 1750  
400 2950 2220  
500 3330 2800 29000
630 4200 3500 37700
800 5330 4440 47900
1000 6660 5550 59800
1250 8330 6900 74800
1600 10660 8890 95800
2000 13330 11110 119700
2500     149700
3150     188600
4000     240000
5000     300000
6300     377200

TABULATOR CALCULATIONS

For the purposes of

  1. Calculating vertical curves, or
  2. Determining belt tension for conveyors of undulating profile.

It is necessary to calculate the belt tensions at various points on the conveyor.

Calculating the tension at any point along the conveyor.

The tabulation method described below is a convenient means of calculating the tensions at any point on the conveyor.

Blank copies of the "Conveyor Tabulation Sheets" are available from Dunlop Africa Industrial Products.

The following method is used to determine the tension at any point along the conveyor:

  1. Calculate the length correction factor.
  2. Look up the mass of moving parts in Table 10.
  3. Calculate the mass of the load from the design capacity and the belt speed.
  4. Calculate the maximum effective tension under constant speed operation. This will always occur when all the non-declined sections of the conveyor are fully loaded and the declined sections empty.
  5. Determine the minimum value for the slack side tension under maximum load condition.
  6. Commencing from immediately behind the drive, label each pulley, intersection point and loading section. Start and end point of each of the load lengths should also be labelled.
  7. Determine the effective tension required to overcome the frictional and gravitational resistances for each of the segments of the conveyor by using formulae on page 4.
    The value of 12, determined in 5 above, is used to calculate the
    effective tension to overcome pulley friction.
  8. The effective tension at any point on the conveyor is the sum of the effective tensions of all preceeding segments. The total effective tension for the conveyor is the sum of the effective tensions for all segments.
  9. The tension at any point 'x' on the conveyor is made up of the effective tension at point 'x' plus the slope tension at point 'x'. Superimposed on this is the tension applied by the take-up system. The tension applied by the take-up is given by the worst case T2 value i.e. the value of T2 which
    1. prevents slip at the highest Te value and,
    2. limits sag between carry idlers.

It may be found that the value of T2 obtained when the maximum effective tension has been calculated is different to that used in the calculations. If this is the case the new T2 value is used to calculate tensions at each point.

Steps 7, 8 and 9 should be repeated for four load cases viz empty, fully loaded, non-declined sections loaded and declined sections loaded.

EXAMPLE

Belt width 1200 mm
Conveyor length 500 m
Lift 45 m
Max capacity 4500 t/hr
Belt speed 3,5 m/s
Skirt length 3 m
Material conveyed Iron Ore
Lump size 100 mm
Bulk density 2,4 t/m3
Carry idler diameter 127 mm
Carry idler spacing 1,2 m
Return idler diameter 127 mm
Return idler spacing 3,6 m
Impact idler diameter 159 mm
Impact idler spacing 0,45 m
Drive wrap 210 degree
Drive surface Rubber lagged
Take-up type Gravity

Step 1

Calculate the length correction factor

C =  L + 70
L
570
500
1,14

Step 2

From Table 10 the mass of the moving parts for a 1200 mm wide conveyor of medium duty is 71 kg/m.

Step 3

Calculate the mass of the load

Q =  0,278 τ
s
 =  0,278 x 4500
3,5
 =  357,4 kg/m

Step 4

Calculate the maximum effective tension when the non-declined sections of the conveyor are all carrying load and the declined sections have no load. The total horizontal length of non-declined sections is 20 + 330 = 350 m.

The overall change in elevation on the non-declined sections is 70 in. Note that the actual length of the conveyor is used to calculate Tx and only the loaded length to calculate Ty. The length correction factor is a constant and is used to convert the actual length to a corrected length. The friction factors are determined by the total conveyor length in all cases.

Effective tension to move the empty belt.

Tx 9,8G x fx C x L
 =  9,8 x 71 x 0,020 x 1,14 x 500
 =  7932N

Effective tension to move the load horizontally.

Ty 9,8Q x fy C x L
 =  9,8 x 357,4 x 0,020 x 1,14 x 350
 =  30745N

Effective tension to lift the load.

Tz 9,8Q x H
 =  9,8 x 357,4 x 70
 =  245176N

Effective tension to overcome skirtboard friction The inter-skirtboard width is assumed to be 2/3 of the belt width i.e. 0,8 m.

Tus 9,8fs x Q x Ls
   S x b2    
 =  9,8 x 357,4 x 0,020 x 1,14 x 350
3,5 x 0,64
 = 

3050N

The total effective tension is the sum of the above four.

Te =  Tx + Ty + Tz + Tus
 =  7932 + 30745 + 245176 + 3050
 =  286903N

Step 5

The minimum slack side tension to prevent slip is:

Tm k x Te
k =  0,38 from Table 11 and hence
Tm 0,38 x 286903
 =  109023

The minimum slack side tension to prevent excessive belt sag is:

Ts 9,8Sf x (B + Q) x Id
 =  9,8 x 6,3 x (14,8 + 357,4) x 1,2
 =  27576N

From Table 8 the estimated belt mass is 14,8 kg/m

Since

Tm > Ts

T2  = Tm

i.e. T2  = 109023N

Step 6

The conveyor is labelled from A to 0 as shown on example sheets 1 to 4.

Step 7

Calculations of the effective tension for each segment (or run) is shown on Sheet 1 for the empty belt, Sheet 2 for the fully loaded belt, Sheet 3 for the case where only non-decline sections are loaded and Sheet 4 where only the decline sections are loaded.

Step 8

The accumulated effective tension column is the sum of the effective tensions of the current segment and all preceeding segments.

Step 9

The total effective tension for each load case is the value in the last row of the column titled 'Accumulated Effective Tension'.

For the empty belt Te 7665N
For the fully loaded belt Te 174188N
For all non-declines loaded Te 283609N
For only declines loaded Te -101755N

The reason for the difference between the effective tension determine step 4 and that on Sheet 3 is the more accurate figures used for mass of the moving parts on the tabulation sheets.

The tension at any point along the conveyor can now be determined, all load cases, by adding the effective tension at the point to the slope tension at the point and then adding the worst case T2 value.

The highest Te value occurs when all non-declines are loaded. i.e. Te = 283609N

Based on this value

Tm k x Te
 =  0,38 x 283609N
 =  107771N

Since Ts, calculated in step 5, is less than Tm

T2 = Tm

i.e. T2 = 107771N

Thus, for example, the effective tension at run L - M takes the following values:

1. Empty Belt 4302N
2. Fully loaded - 24577N
3. Non-declines loaded 6059N
4. Declines loaded -26334N

From these it is determined that the tension at point M under the four cases, given by

Te + T2 + Th is

Empty belt

4302 + 107771 + 0
= 112073N

Fully loaded belt

-24577 + 107771 + 0
= 83194N

Non-declines loaded

6059 + 107771 + 0
= 113830N

Declines loaded

-26334 + 107771 + 0
= 81437N

CLIENT NAME CONVEYOR EQUIPMENT NO.
Belt width W 1200 mm
Conveyor length L 500 m
Lift H 45 m
Max capacity τ 4500 t/hr
Belt speed S 3,5 m/s
Skirt length Ls 3 m
Material conveyed   Iron Ore  
Lump size   100 mm
Bulk densiy   2,4 t/m3
Corrected length Lc 570 m
Correction factor C 1,14  

Idler Data Carry Return Impact  
Trough Angle 35 0 35 degree
Roll Diameter 127 127 159 mm
Spacing 1,2 3,6 0,45 m
Rotating Parts Mass M 19,9 17,1 22,9 kg/set

Friction Factors

Rotating Parts fx  0,020
Load Friction fy 0,022
Skirt Friction fs 0,65
Scraper Friction fc 0,60
Pulleys Diameter Location
Head 630 mm O
Drive Head mm O
HT Bend - mm -
Tail 500 mm I
Take-up 500 mm E
Take-up Bend 500 mm D,F
LT Bend 450 mm B
Tripper - mm -

Drive & Take-up

Angle of Wrap 210°
Drive Surface

Lagged

Bare

Take-up Type

Gravity

Screw

Drive Factor k 0,38

 

Run Length
of Run
(m)
Lr
Idler
Mass
(kg/m)
Mr = M/Id
Belt
Mass
(kg/m)
B
Load
Mass
(kg/m)
Qr
Tension to Overcome Friction (N) Lift
of
Run
(m)
Hr
Tension to
Overcome
Gravity
(N)
9,8QHr
Effective
Tension
for Run
(N)
Ter
Accumulative
Effective
Tension
(N)
Te 
Absorbed
Power
(W)
TeS
Idlers
9,8LrCfxMr
Belt
9,8LrCfxB
Pulley
0,01(do/D)T2
Load
9,8LrCfxQ
A-B 2 0 14,8 0 0 7 178 0 0 0 185 185 647
B-C 98 5,7 14,8 0 125 324 0 0 25 0 449 634 2218
C-D 15 5,7 14,8 0 19 50 178 0 -3 0 247 881 3082
D-E 0 0 14,8 0 0 0 178 0 0 0 178 1059 3706
E-F 0 0 14,8 0 0 0 178 0 0 0 178 1237 4330
F-G 330 5,7 14,8 0 420 1091 0 0 -67 0 1512 2749 9621
G-H 50 5,7 14,8 0 64 165 0 0 10 0 229 2978 10422
H-I 20 5,7 14,8 0 25 66 178 0 0 0 270 3248 11367
I-J 2 0 14,8 0 0 7 0 0 0 0 7 3255 11390
J-K 3 50,9 14,8 0 34 10 178 0 0 0 222 3477 12168
K-L 17 16,5 14,8 0 63 56 178 0 0 0 297 3774 13208
L-M 50 16,5 14,8 0 184 165 178 0 -10 0 528 4302 15055
M-N 330 16,5 14,8 0 1217 1091 178 0 70 0 2486 6788 23757
N-O 100 16,5 14,8 0 369 331 178 0 -25 0 887 7665 36829

SHEET 1 - EMPTY BELT

CLIENT NAME CONVEYOR EQUIPMENT NO.
Belt width W 1200 mm
Conveyor length L 500 m
Lift H 45 m
Max capacity τ 4500 t/hr
Belt speed S 3,5 m/s
Skirt length Ls 3 m
Material conveyed   Iron Ore  
Lump size   100 mm
Bulk densiy   2,4 t/m3
Corrected length Lc 570 m
Correction factor C 1,14  

Idler Data Carry Return Impact  
Trough Angle 35 0 35 degree
Roll Diameter 127 127 159 mm
Spacing 1,2 3,6 0,45 m
Rotating Parts Mass M 19,9 17,1 22,9 kg/set

Friction Factors

Rotating Parts fx  0,020
Load Friction fy 0,022
Skirt Friction fs 0,65
Scraper Friction fc 0,60
Pulleys Diameter Location
Head 630 mm O
Drive Head mm O
HT Bend - mm -
Tail 500 mm I
Take-up 500 mm E
Take-up Bend 500 mm D,F
LT Bend 450 mm B
Tripper - mm -

Drive & Take-up

Angle of Wrap 210°
Drive Surface

Lagged

Bare

Take-up Type

Gravity

Screw

Drive Factor k 0,38

 

Run Length
of Run
(m)
Lr
Idler
Mass
(kg/m)
Mr = M/Id
Belt
Mass
(kg/m)
B
Load
Mass
(kg/m)
Qr
Tension to Overcome Friction (N) Lift
of
Run
(m)
Hr
Tension to
Overcome
Gravity
(N)
9,8QHr
Effective
Tension
for Run
(N)
Ter
Accumulative
Effective
Tension
(N)
Te 
Absorbed
Power
(W)
TeS
Idlers
9,8LrCfxMr
Belt
9,8LrCfxB
Pulley
0,01(do/D)T2
Load
9,8LrCfxQ
A-B 2 0 14,8 0 0 7 178 0 0 0 185 185 647
B-C 98 5,7 14,8 0 125 324 0 0 25 0 449 634 2218
C-D 15 5,7 14,8 0 19 50 178 0 -3 0 247 881 3082
D-E 0 0 14,8 0 0 0 178 0 0 0 178 1059 3706
E-F 0 0 14,8 0 0 0 178 0 0 0 178 1237 4330
F-G 330 5,7 14,8 0 420 1091 0 0 -67 0 1512 2749 9621
G-H 50 5,7 14,8 0 64 165 0 0 10 0 229 2978 10422
H-I 20 5,7 14,8 0 25 66 178 0 0 0 270 3248 11367
I-J 2 0 14,8 0 0 7 0 0 0 0 7 3255 11390
J-K 3 50,9 14,8 357,4 34 10 178 264 0 0 485 3740 13090
K-L 17 16,5 14,8 357,4 63 56 178 1493 0 0 1791 5531 19357
L-M 50 16,5 14,8 357,4 184 165 178 4393 -10 -35028 -30108 -24577 -86019
M-N 330 16,5 14,8 357,4 1217 1091 178 28991 70 245196 276673 252096 882335
N-O 100 16,5 14,8 357,4 369 331 178 8785 -25 -8750 -77908 174188 609659

SHEET 2 - FULLY LOADED BELT

CLIENT NAME CONVEYOR EQUIPMENT NO.
Belt width W 1200 mm
Conveyor length L 500 m
Lift H 45 m
Max capacity τ 4500 t/hr
Belt speed S 3,5 m/s
Skirt length Ls 3 m
Material conveyed   Iron Ore  
Lump size   100 mm
Bulk densiy   2,4 t/m3
Corrected length Lc 570 m
Correction factor C 1,14  

Idler Data Carry Return Impact  
Trough Angle 35 0 35 degree
Roll Diameter 127 127 159 mm
Spacing 1,2 3,6 0,45 m
Rotating Parts Mass M 19,9 17,1 22,9 kg/set

Friction Factors

Rotating Parts fx  0,020
Load Friction fy 0,022
Skirt Friction fs 0,65
Scraper Friction fc 0,60
Pulleys Diameter Location
Head 630 mm O
Drive Head mm O
HT Bend - mm -
Tail 500 mm I
Take-up 500 mm E
Take-up Bend 500 mm D,F
LT Bend 450 mm B
Tripper - mm -

Drive & Take-up

Angle of Wrap 210°
Drive Surface

Lagged

Bare

Take-up Type

Gravity

Screw

Drive Factor k 0,38

 

Run Length
of Run
(m)
Lr
Idler
Mass
(kg/m)
Mr = M/Id
Belt
Mass
(kg/m)
B
Load
Mass
(kg/m)
Qr
Tension to Overcome Friction (N) Lift
of
Run
(m)
Hr
Tension to
Overcome
Gravity
(N)
9,8QHr
Effective
Tension
for Run
(N)
Ter
Accumulative
Effective
Tension
(N)
Te 
Absorbed
Power
(W)
TeS
Idlers
9,8LrCfxMr
Belt
9,8LrCfxB
Pulley
0,01(do/D)T2
Load
9,8LrCfxQ
A-B 2 0 14,8 0 0 7 178 0 0 0 185 185 647
B-C 98 5,7 14,8 0 125 324 0 0 25 0 449 634 2218
C-D 15 5,7 14,8 0 19 50 178 0 -3 0 247 881 3082
D-E 0 0 14,8 0 0 0 178 0 0 0 178 1059 3706
E-F 0 0 14,8 0 0 0 178 0 0 0 178 1237 4330
F-G 330 5,7 14,8 0 420 1091 0 0 -67 0 1512 2749 9621
G-H 50 5,7 14,8 0 64 165 0 0 10 0 229 2978 10422
H-I 20 5,7 14,8 0 25 66 178 0 0 0 270 3248 11367
I-J 2 0 14,8 0 0 7 0 0 0 0 7 3255 11390
J-K 3 50,9 14,8 357,4 34 10 178 264 0 0 485 3740 13090
K-L 17 16,5 14,8 357,4 63 56 178 1493 0 0 1791 5531 19357
L-M 50 16,5 14,8 0 184 165 178 0 -10 0 528 6059 21205
M-N 330 16,5 14,8 357,4 1217 1091 178 28991 70 245196 276673 282732 989559
N-O 100 16,5 14,8 0 369 331 178 0 -25 0 877 283609 992631

SHEET 3 - NON-DECLINES LOADED

CLIENT NAME CONVEYOR EQUIPMENT NO.
Belt width W 1200 mm
Conveyor length L 500 m
Lift H 45 m
Max capacity τ 4500 t/hr
Belt speed S 3,5 m/s
Skirt length Ls 3 m
Material conveyed   Iron Ore  
Lump size   100 mm
Bulk densiy   2,4 t/m3
Corrected length Lc 570 m
Correction factor C 1,14  

Idler Data Carry Return Impact  
Trough Angle 35 0 35 degree
Roll Diameter 127 127 159 mm
Spacing 1,2 3,6 0,45 m
Rotating Parts Mass M 19,9 17,1 22,9 kg/set

Friction Factors

Rotating Parts fx  0,020
Load Friction fy 0,022
Skirt Friction fs 0,65
Scraper Friction fc 0,60
Pulleys Diameter Location
Head 630 mm O
Drive Head mm O
HT Bend - mm -
Tail 500 mm I
Take-up 500 mm E
Take-up Bend 500 mm D,F
LT Bend 450 mm B
Tripper - mm -

Drive & Take-up

Angle of Wrap 210°
Drive Surface

Lagged

Bare

Take-up Type

Gravity

Screw

Drive Factor k 0,38

 

Run Length
of Run
(m)
Lr
Idler
Mass
(kg/m)
Mr = M/Id
Belt
Mass
(kg/m)
B
Load
Mass
(kg/m)
Qr
Tension to Overcome Friction (N) Lift
of
Run
(m)
Hr
Tension to
Overcome
Gravity
(N)
9,8QHr
Effective
Tension
for Run
(N)
Ter
Accumulative
Effective
Tension
(N)
Te 
Absorbed
Power
(W)
TeS
Idlers
9,8LrCfxMr
Belt
9,8LrCfxB
Pulley
0,01(do/D)T2
Load
9,8LrCfxQ
A-B 2 0 14,8 0 0 7 178 0 0 0 185 185 647
B-C 98 5,7 14,8 0 125 324 0 0 25 0 449 634 2218
C-D 15 5,7 14,8 0 19 50 178 0 -3 0 247 881 3082
D-E 0 0 14,8 0 0 0 178 0 0 0 178 1059 3706
E-F 0 0 14,8 0 0 0 178 0 0 0 178 1237 4330
F-G 330 5,7 14,8 0 420 1091 0 0 -67 0 1512 2749 9621
G-H 50 5,7 14,8 0 64 165 0 0 10 0 229 2978 10422
H-I 20 5,7 14,8 0 25 66 178 0 0 0 270 3248 11367
I-J 2 0 14,8 0 0 7 0 0 0 0 7 3255 11390
J-K 3 50,9 14,8 0 34 10 178 0 0 0 222 3477 12168
K-L 17 16,5 14,8 0 63 56 178 0 0 0 297 3774 13208
L-M 50 16,5 14,8 357,4 184 165 178 4393 -10 -35028 -30108 -26334 -92169
M-N 330 16,5 14,8 0 1217 1091 178 0 70 0 2486 -23848 -83467
N-O 100 16,5 14,8 357,4 369 331 178 8785 -25 -87570 -77907 -101755 -356143

SHEET 4 - DECLINES LOADED

CLIENT NAME CONVEYOR EQUIPMENT NO.
Belt width W _______ mm
Conveyor length L _______ m
Lift H _______ m
Max capacity τ _______ t/hr
Belt speed S _______ m/s
Skirt length Ls _______ m
Material conveyed   _______  
Lump size   _______ mm
Bulk densiy   _______ t/m3
Corrected length Lc _______ m
Correction factor C _______  

 

 

 

 

Idler Data Carry Return Impact  
Trough Angle _____ _____ _____ degree
Roll Diameter _____ _____ _____ mm
Spacing _____ _____ _____ m
Rotating Parts Mass M _____ _____ _____ kg/set

Friction Factors

Rotating Parts fx  _______
Load Friction fy _______
Skirt Friction fs _______
Scraper Friction fc _______
Pulleys Diameter Location
Head _______ mm _______
Drive _______ mm _______
HT Bend _______ mm _______
Tail _______ mm _______
Take-up _______ mm _______
Take-up Bend _______ mm _______
LT Bend _______ mm _______
Tripper _______ mm _______

Drive & Take-up

Angle of Wrap _______
Drive Surface

Lagged

Bare

Take-up Type

Gravity

Screw

Drive Factor k _______

 

Run Length
of Run
(m)
Lr
Idler
Mass
(kg/m)
Mr = M/Id
Belt
Mass
(kg/m)
B
Load
Mass
(kg/m)
Qr
Tension to Overcome Friction (N) Lift
of
Run
(m)
Hr
Tension to
Overcome
Gravity
(N)
9,8QHr
Effective
Tension
for Run
(N)
Ter
Accumulative
Effective
Tension
(N)
Te 
Absorbed
Power
(W)
TeS
Idlers
9,8LrCfxMr
Belt
9,8LrCfxB
Pulley
0,01(do/D)T2
Load
9,8LrCfxQ
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                            
                           
                           
                           

TENSION TABULATOR

VERTICAL CURVES

Design of vertical curves

It is necessary to calculate the tension at the point under consideration following the method described in Tabulator Calculations.

Concave curves

The worst condition exists when the belt is loaded to the start of the curve and under these conditions the minimum radius of curvature to prevent the belt lifting off the idlers is 

R =  113 Tp
   B   

Where

R = radius of curvature (m) 
Tp = Belt tension at the point under consideration (kN) 
B = Belt mass per unit length (kg/m)

Convex curve requirements

The following conditions must be satisfied 

  1. Minimum radius to prevent overstress of the belt edges
R =  Sinβ x W x E
4494 (tr - tc)
  1. Minimum radius to prevent buckling
R =  Sinβ x W x E
8988 (tr - 5,2)
  1. Maximum allowable change of incline per idler to prevent overstress of belt edges
ø = 5,1 (tr - tc) x 1000
W x E x Sinβ
  1. Maximum allowable change of incline per idler to prevent buckling
ø = 2,55 (tc - 5) x 1000
W x E x Sinβ

The curve must be designed with a radius at least large enough to satisfy conditions 1 and 2 and the idler spacing must ensure that conditions 3 and 4 are satisfied.

tr = Rated belt tension (kN/m)
R = Radius of curvature (m)
β = Troughing angle (degrees)
W = Belt width (mm)
E = Belt modulus (kN/m)
tc = Belt tension at the curve (kN/m)

MAXIMUM INCLINE ANGLE

  1. Conventional smooth surface conveyor belts
  2. Ruftop package handling belts
  3. Chevron top belts
  4. Boxes belts with flexible side walls
  5. Sandwich type conveyors
  6. Elevator belts

GRAPH FOR ESTIMATING BELT LENGTH/ROLLED BELT DIAMETER

Belt length/rolled belt diameter

D = rolled belt diameter (mm)
L = belt length (m)
t = belt thickness (mm)
d = core diameter (mm)
N = number of coils on roll

Belt length:

L =  π(D + d)N
2

Rolled belt diameter:

Assuming the length of belt is large and the thickness not abnormally small, then the core diameter can be neglected in approximate calculations.

or

Where d 0,3m for general stock belting and up to 0,5m for heavy rolls of belting, such as steelcord belting or very wide belts.

USEFUL DATA CONVERSION FACTORS

Imperial to metric

To convert from To Multiply by
in mm 25,4
in cm 2,54
ft m 0,3048
in2 cm2 6,4516
ft2 m2 0,0929
ft3 m3 0,0283
ft/min m/s 0,0051
lb kg 0,4536
lbf N 4,448
lbf/in kN/m 0,1751
lb/in kg/cm 0,179
lb/ft kg/m 1,488
lb/in2 kg/cm2 0,0703
lb/ft3 kg/m3 16,0184
HP kW 0,746
HP Watts 746

Metric to imperial

To convert from To Multiply by
mm in 0,03937
cm in 0,3937
m ft 3,281
cm2 in2 0,155
m2 ft2 10,7639
m3 ft3 35,3148
m/s ft/min 196,85
kg lb 2,205
N lbf 0,2248
kN/m lbf/in 5,71
kg/cm lb/in 5,6
kg/m lb/ft 0,672
kg/cm2 lb/in2 14,2
kg/m3 lb/ft3 0,0624
kW HP 1,3405
Watts HP 0,00134

Trigonometrical functions of common angles

Degrees Sin Cos Tan
1 0,0175 0,9998 0,0175
2 0,0349 0,9994 0,0349
3 0,0523 0,9986 0,0524
4 0,0698 0,9976 0,0699
5 0,0872 0,9962 0,0875
10 0,1736 0,9848 0,1763
15 0,2588 0,9659 0,2679
20 0,3420 0,9397 0,3640
25 0,4226 0,9063 0,4663
27 0,4617 0,8870 0,5206
30 0,5000 0,8660 0,5773
35 0,5736 0,8191 0,7002
40 0,6248 0,7660 0,8391
45 0,7071 0,7071 1,0000