Electrical Machines - Questions and Answers
Information courtesy of ALSTOM.

GENERAL INFORMATION

THERMISTORS

Thermistors are miniature semi-conductors (aspirin size or smaller), which are introduced into the stator winding overhang of an induction motor.

Protection devices range from simple mass produced thermal relays, to expensive precision instruments, whichever is determined by economics, comparing the cost of production with the cost of the motor, or loss of production due to a failure.

Fig 86 Thermistor being inserted in the stator winding overhang.

Cases of failure are categorised as follows:

  1. overload*

  2. stalling*

  3. excessive accelerating times*

  4. frequent starting, inching or plug reversing*

  5. single phasing*

  6. overvoltage or undervoltage*

  7. unbalanced supply voltage*

  8. high ambient temperature*

  9. blocked ventilation*

  10. incorrect enclosure

  11. ingress of moisture

  12. bearing failure - misalignment - mechanical overload - contamination.

NOTE: Not all of the above reflect an increase in line current; most, however, are detected by an increase in temperature.

* Thermistors offer protection against items (a) to (j) inclusive.

The advantages of thermistors - particularly those having a positive temperature coefficient of resistance - for the thermal protection of windings, stem from two particular characteristics, as follows:

RESISTANCE CHARACTERISTICS

The resistance of the thermistor is relatively low at normal temperatures and remains nearly constant up to a critical value, selected for the class of winding insulation that is to be protected. At this point, even a slight increase in temperature will cause the resistance of the thermistor to rise to a value up to several hundred times its normal value when cold. This sudden increase of resistance is easily interpreted into a positive switching action.

The positive characteristic, i.e. resistance increase with temperature, achieves inherent safety; an open circuit of a thermistor will have the same effect as an unsafe temperature.

Fig 87 Typical temperature-resistance curve for thermistor.

PHYSICAL CHARACTERISTICS

The small size of the thermistor enables it to be installed in intimate contact with the stator windings, and its low thermal inertia gives rapid and accurate response to winding temperature changes. Thermistors, being robust solid-state devices, are inserted between the conductors of the end windings during winding (see fig. 86); subsequent varnish impregnation and baking makes them an integral mass with the winding.

Three-phase motors usually have one thermistor fitted per phase, the thermistors being connected in series with each other and also to a control unit. When actuated by a sudden change in the resistance of the thermistor circuit at the critical temperature, the control unit will disconnect the main supply through the main contactor or operate a warning device. After cooling by approximately 5°C the winding can be re-energised either manually or automatically. This means that the motor can be returned to service with the minimum of delay, as shown in figures. 88 and 89.

Fig 88
Curve showing temperature-time relationship of a GEC 18,6 kW thermistor-protected motor subjected to a locked-rotor test from cold (stator winding re-energised automatically). Note the initial overshoot of temperature which the winding and insulation system must withstand.

Fig 89
Curve showing temperature-time relationship of the same motor as in fig. 88, running at 100% overload windings initially hot. Note the small differential between the 'tripping' and 'resetting' temperature.

HEATERS

Moisture attacks insulation and causes insulation failure. Breakdown may occur when the windings are energised. Insulation therefore deteriorates under conditions involving long idle periods, combined with high humidity and widely varying ambients.

Standby motors fail to operate when they are needed - motors installed twelve months before start-up, fail on commissioning.

It should also be noted that leads carrying supply to the motors also absorb moisture.

Under high humidity conditions with widely varying ambient temperature and/or where a motor is expected to suffer long idle periods, additional impregnation treatment of the winding, plus some form of anti-condensation heater is recommended. This can be achieved by either (a) low voltage heating or (b) fitting heaters.

a) LOW VOLTAGE HEATING

This involves connecting a single phase, low voltage (5 to 7,5 per cent of motor terminal voltage) across two of the three leads of the 3 phase motor, while the motor is inoperative.

This method is very effective, but necessitates a low voltage transformer. It obviates the problem of failed heaters, going undetected, plus the down-time associated with replacing a heater inside the motor.

b) INTERNALLY FITTED HEATERS

The standard heater, fitted on 80 to 315 sizes, consists of a glass fibre tape with the heating element integrally woven into it. This tape is then fitted inside a silicon impregnated glass fibre sleeve.

The tape heater is then wrapped around the stator winding overhang, braced and completely impregnated with the stator winding.

Two leads are brought out to the inside of the main terminal box, unless otherwise requested, to provide a separate heater terminal box.

Heater Rating (watts)
Motor size 100 112 132 160 180 200 225 250 280 315
Watts 25 25 40 40 65 65 130 130 200 200

Heater supply 220/250 volts, single phase. Tape type by surface heating

Fig 90 Anti-condensation heater

RECOMMENDED RATINGS OF ENGLISH ELECTRIC H.R.C. FUSE-LINKS FOR MOTOR PROTECTION
kW 380 Volt 3-phase 433 Volt 3-Phase 525 Volt 3-Phase

kW

Full load
current amps
Fuse rating amps
Starting
Full load
current amps
Fuse rating amps
Starting
Full load
current amps
Fuse rating amps
Starting
A B A B A B

0.75

2.1

10

4

1.8

6

4

1.6

6

2

0.75

1.1

2.7

15

6

2.3

10

6

2.0

10

4

1.1

1.5

3.1

15

10

3.3

15

6

2.8

15

6

1.5

2.2

5.3

20

15

4.6

15

10

4.0

15

10

2.2

3.0

6.9

20

16

6.1

20

16

5.0

16

10

3.0

4.0

8.7

25

16

7.6

25

16

6.3

20

16

4.0

5.5

12.6

35

20

11.0

30

20

9.6

25

15

5.5

7.5

15.8

40

25

13.8

35

20

12.0

35

20

7.5

11.0

23

60

35

20.2

50

30

17.5

40

25

11.0

15.0

31

80

40

27.0

60

35

23.5

60

35

15.0

18.5

38

80

50

34

80

40

29

80

35

18.5

22

45

100

60

40

80

50

35

80

40

22

30

61

125

80

54

100

60

41

100

60

30

33

68

125

80

60

125

80

52

100

60

33

37

76

150

100

61

125

80

58

125

80

37

45

91

150

100

80

150

100

69

125

80

45

55

113

200

125

100

200

125

87

150

100

55

75

149

250

150

131

250

150

114

200

125

75

90

186

350

250

166

300

200

142

250

150

90

110

218

350

150

190

350

250

166

300

200

110

132

252

350

350

222

350

250

193

350

250

132

150

288

400

350

252

350

350

219

350

250

150

200

420

500

450

370

500

450

318

450

350

200

'Starting A' - This covers direct-on-line starting based on 7 x motor full load current for 10 seconds.
'Starting B' - This covers assisted starting based on 3,5 x motor full load current for 20 seconds.

NOTE: Contact GEC Controls (Pty) Ltd., for recommended fuse ratings to protect motors with starting conditions different from those mentioned above. Full load currents given are the average of figures supplied by various South African, British and Continental motor manufacturers.

Power Factor Correction

cos r1 = Initial power factor 
cos r2 = Required power factor

To correct the power factor from cos r1 to cos r2

Capacitor kVAr required = input kW x (tan r1 - tan r2) -- Equation 1

The table below gives values of (tan r1 - tan r2) for power factors from 0,5 upwards and it is only necessary to multiply the kW input by the factor given to obtain the required capacitor kVAr.

NOTE:

1. If the capacitor kVAr exceeds 90 per cent of the no-load kVA, then the capacitor must be connected at the supply side of the motor starter and incorporate its own isolating switch. This is to avoid the possibility of the capacitor (if connected across the motor terminals) causing high voltage and regenerative braking, which can cause terminal flashover and shaft failure.

Fig 92

If the capacitor kVAr is below 90 per cent of the no load kVA~ the capacitor can be connected directly across the motor terminals.

2. Input kW are computed as follows:

Output kW
Efficiency per unit

Example:

A 90kw motor has a full load power factor of 0,79 and an efficiency at full load of 93 per cent. Power factor to be corrected to 0,9.

Input kW =  Output kW  =  90  = 96.77 kW
Efficiency per unit 0.93
From selection table, multiplying factor = 0.29
kVAr =  96.77 x 0.29 = 28.06

CAPACITOR kVAr REQUIRED PER UNIT kW INPUT FOR POWER FACTOR CORRECTION

INITIAL POWER
FACTOR
POWER FACTOR REQUIRED
0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0
0.50 1.11 1.16 1.17 1.19 1.22 1.25 1.28 1.31 1.34 1.37 1.40 1.44 1.49 1.53 1.60 1.73
0.51 1.07 110 1.12 1.15 1.18 1.21 1.24 1.26 1.29 1.33 1.36 1.40 1.44 1.49 1.55 1.69
0.52 1.02 1.05 1.08 1.11 1.14 1.16 1.19 1.22 125 1.28 1.32 1.36 1.40 1.45 151 1.65
0.53 1.98 1.01 1.04 1.07 1.09 1.12 1.15 1.18 1.21 1.24 1.28 1.32 136 1.41 1.47 1.60
0.54 0.94 0.97 1.00 1.02 1.05 1.08 1.11 1.14 1.17 1.20 1.23 1.27 1.32 1.31 1.43 1.57
0.55 0.90 0.93 0.96 098 1.01 1.04 1.07 1.10 1.13 1.16 1.20 1.23 1.28 1.33 1.38 1.53
0.56 0.86 0.89 0.91 0.94 0.97 1.00 1.03 1.06 1.09 112 1.15 1.19 1.24 1.29 1.34 1.48
0.57 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.02 1.05 108 1.12 1.16 1.20 1.25 1.31 1.45
0.58 0.79 0.81 0.84 0.81 0.90 0.93 0.95 0.98 1.01 1.05 1.08 1.12 1.16 1.21 1.27 1.41
0.59 0.75 0.78 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.08 1.12 1.11 1.23 1.37
0.60 0.71 0.74 0.77 0.80 0.82 0.85 0.88 0.91 0.94 0.97 101 1.05 1.09 1.14 1.20 1.34
0.61 0.68 0.71 0.73 0.76 0.79 0.82 0.85 0.87 0.90 0.94 0.97 1.01 1.05 1.10 1.16 1.30
0.62 0.65 0.61 0.70 0.73 0.75 0.78 0.81 0.84 0.87 090 0.94 0.98 1.02 1.07 1.13 1.27
0.63 0.61 0.64 0.67 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.90 0.94 0.99 1.03 1.09 1.24
0.64 0.58 0.61 0.63 0.65 0.69 0.72 0.75 0.77 0.80 0.84 0.87 0.91 0.95 1.00 1.06 1.20
0.65 0.55 0.51 0.60 0.63 0.66 0.69 0.71 0.74 0.77 0.81 0.84 0.88 0.92 0.97 1.03 1.11
0.66 0.52 0.55 0.57 0.60 0.63 0.66 0.68 0.71 0.74 0.78 0.81 0.85 0.89 0.94 1.00 1.14
0.67 0.49 0.51 0.54 0.57 0.60 0.63 0.65 0.68 031 0.75 0.78 0.82 0.86 0.91 0.97 1.11
0.68 0.46 0.48 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.72 0.75 0.79 0.83 0.88 0.94 1.08
0.69 0.43 0.46 0.48 0.51 0.54 0.57 0.60 0.62 0.65 0.69 0.72 0.76 0.80 0.85 0.91 1.05
0.70 0.40 0.43 0.46 0.48 0.51 0.54 0.57 0.60 0.63 0.66 0.70 0.73 0.78 0.83 0.88 1.03
0.71 0.37 0.40 0.43 0.45 0.48 0.51 0.54 0.57 0.60 0.63 0.67 0.70 0.75 0.80 0.85 1.00
0.72 0.34 0.37 0.40 0.43 0.45 0.48 0.51 0.54 0.57 0.60 0.64 0.68 0.72 0.77 0.83 0.97
0.73 0.32 0.34 0.37 0.40 0.43 0.45 0.48 0.51 0.54 0.57 0.61 0.65 0.69 0.74 0.80 0.94
0.74 0.29 0.32 0.34 0.31 0.40 0.43 0.45 0.48 0.51 0.55 0.58 0.62 0.66 0.71 0.77 0.91
0.75 0.26 0.29 0.32 0.34 0.37 0.40 0.43 0.45 0.49 0.52 0.55 0.59 0.64 0.68 0.74 0.89
0.76 0.23 0.26 0.29 0.32 0.34 0.31 0.40 0.43 0.46 0.49 0.53 0.57 0.61 0.66 0.72 0.86
0.77 0.21 0.23 0.26 0.29 0.32 0.34 0.37 0.40 0.43 0.41 0.50 0.54 0.58 0.63 0.69 0.83
0.78 0.18 0.21 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.48 0.51 0.55 0.60 0.66 0.80
0.79 0.15 0.18 0.21 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.45 0.49 0.53 0.58 0.64 0.78
0.80 0.13 0.15 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.39 0.42 0.46 0.50 0.55 0.61 0.75
0.81 0.10 0.13 0.16 0.18 0.21 0.24 0.21 0.30 0.33 0.36 0.40 0.44 0.48 0.53 0.59 0.73
0.82 0.08 0.10 0.13 0.16 0.19 0.22 0.24 0.27 0.30 0.34 0.37 0.41 0.45 0.50 0.56 0.70
0.83 0.05 0.08 0.10 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.35 0.38 0.43 0.48 0.53 0.68
0.84 0.03 0.05 0.08 0.11 0.14 0.16 0.19 0.22 0.25 0.28 0.32 0.36 0.40 0.45 0.51 0.65
0.85 - 0.03 0.05 0.08 0.11 0.14 0.11 0.20 0.23 0.26 0.29 0.33 0.38 0.42 0.48 0.62
0.86 - - 0.03 0.05 0.08 0.11 0.14 0.11 0.20 0.23 0.27 0.31 0.35 0.45 0.46 0.60
0.87 - - - 0.03 0.05 0.08 0.11 0.14 0.17 0.20 0.24 0.28 0.32 0.37 0.43 0.57
0.88 - - - - 0.03 0.06 0.09 0.11 0.14 0.18 0.21 0.25 0.29 0.34 0.40 0.54
0.89 - - - - - 0.03 0.06 0.09 0.12 0.15 0.18 0.22 0.26 0.31 0.37 0.51
0.90 - - - - - - 0.03 0.06 0.09 0.12 0.16 0.20 0.24 0.29 0.35 0.49
0.91 - - - - - - - 0.03 0.06 0.09 0.13 0.17 0.21 0.26 0.32 0.46
0.92 - - - - - - - - 0.03 0.06 0.10 0.14 0.18 0.23 0.29 0.43
0.93 - - - - - - - - - 0.03 0.07 0.11 0.15 0.20 0.26 0.40.
0.94 - - - - - - - - - - 0.04 0.08 0.12 0.17 0.22 0.37
0.95 - - - - - - - - - - - 0.04 0.08 0.13 0.19 0.33
0.96 - - - - - - - - - - - - 0.04 0.09 0.15 0.29
0.97 - - - - - - - - - - - - - 0.05 0.11 0.25
0.98 - - - - - - - - - - - - - - 0.06 0.20
0.99 - - - - - - - - - - - - - - - 0.14

NOISE LEVELS

No load sound pressure and sound power levels for TEFC 3 phase, 50Hz motors.

Sound Pressure Reference is 2 x 10-5 N/m2
Sound Power Reference is 10-12 watts
Sound Pressure measured at 3 metre reference radius.
For 1 metre radius, at mean sound pressure add 9.5 dB

Synchronous Speed: 3000 r/min.

Frame
Size
Output
(kW)
Motor Sound
Motor dB
(ESCOM)
Mean Sound
Pressure
(dB) A
Noise pressure spectrum readings (dB)
at mid band frequencies (Hz) of:
63 125 250 500 1000 2000 4000 8000
80 0.75                    
80 1.1                    
90S 1.5                    
D90L 2.2 73 5S.2 54 44.2 51.4 50.8 50.6 48.7 45.8 38.5
D100L 3.0 78 60 78.7 72.5 75 73.5 72.8 70.4 66.3 62.2
D112M 4.0 78 60 78.7 72.5 75 73.5 72.8 70.4 66.3 62.2
D132S 5.5 84 66.2 74.8 64.8 59.5 63.2 60.2 59.1 58 50.3
D1325 7.5 84 66.2 74.8 64.8 59.5 63.2 60.2 59.1 58 50.3
D160M 11 89.5 71.5 72.5 70 63 67 66.5 66.5 61 54.5
D160M 15 89.5 71.5 72.5 70 63 67 66.5 66.5 61 54.5
D160L 18.5 89.5 71.5 72.5 70 63 67 66.5 66.5 61 54.5
D8180M 22 97.5 79.5 74.5 69 67.5 75 75 74.5 67 60
D200L 30 101.5 83.5 78.5 75 72.5 78 79.5 78 71 63.5
D200L 37 101.5 83.5 78 75 72.5 78 79.5 78 71 63.5
D225M 45 102 84 81.5 79 77.5 79 80.5 78 71 64.5
D250S 55 99 81.5 61 62.5 72.5 79 77.5 73.5 69 64
D250M 75 98 80.5 60 59 71 78 77 70 66 68
D2805 90                    
D280M 110 103 85.5 72 62 74.5 83.5 82.5 77 74.5 68.5
D315S 132 106 88.5 67 65 76.5 84 83 82 76.5 68
D315M 150 106.5 89 69.5 66.5 76 84 85 82.5 77 74.5
D315MX 200                    
D315MXB                      

Synchronous Speed: 1500 r/min

Frame
Size
Output
(kW)
Motor Sound
Motor dB
(ESCOM)
Mean Sound
Pressure
(dB) A
Noise pressure spectrum readings (dB)
at mid band frequencies (Hz) of:
63 125 250 500 1000 2000 4000 8000
80 0,75                    
90S 1,1                    
D90L 1,5 62 44,1 33,9 35,5 34,3 36,1 36,1 40,3 36,2 25,5
D100L 2,2 62 44 35,4 36,3 39,4 39,2 39,2 38,5 38,3 23,6
D100L 3,0 62 44 35,4 36,3 39,4 39,2 39,2 38,9 38,3 23,6
D112M 40 62 44 35,4 36,3 39,4 39,2 39,2 38,9 38,3 23,6
D132A 5,5 72 54,3 51,8 50,4 42,6 50,2 47 50,2 42,1 29,3
D132M 7,5 72 54,3 51,8 50,4 42,6 50,2 47 50,2 42,1 29,3
D16DM 11 15 57 57,5 51 51,3 51 53,3 50,5 44 35
D160L 15 75 57 57,5 51 51,3 51 53,5 50,5 44 35
D18DM 18,5 79,5 61,5 57 51 55 59,5 58 53 45 38
D180L 22 79,5 61,5 57 51 55 59,5 58 53 45 38
D200L 30 83,5 65,5 63,5 58,5 59 64. 61,5 57 SO 43
D225S 37 88,5 70,5 68,5 65 63 66,5 68 61,5 54,5 50,5
D225M 45 88,5 70,5 68,5 65 63 66,5 68 61,5 54,5 50,5
D250S 55 90,5 73 60 56,5 70 71,5 68 62 58,5 55,5
D25DM 75                    
D280S 90 91,5 74 60 58 70 71,5 68,5 65 58,5 54,4
D28DM 110 93 75,5 62,5 64 67 72,5 71 68 61 56,5
D315S 132 98 80,5 64,5 64,5 72 77,5 77 73,5 63 57,5
D315M 150 97,5 80 61 60,5 73 78,5 76,5 70 63 60
D315MX 200                    
D315MXB 220                    

Synchronous Speed: 1 000 r/min.

Frame
Size
Output
(kW)
Motor Sound
Motor dB
(ESCOM)
Mean Sound
Pressure
(dB) A
Noise pressure spectrum readings (dB)
at mid band frequencies (Hz) of:
63 125 250 500 1000 2000 4000 8000
90S 0.75                    
D90L 1.1 63 45 28.5 30.9 27.8 43.8 34.2 30.2 31.5 15.3
D100L 1.5 67 48.6 29.2 38.3 32.1 45.6 36.4 45.9 29.9 17.5
D112M 2.2 67 48.6 29.2 38.3 32.1 456 36.4 45.9 29.9 17.5
D132S 3.0 65 47.3 45.9 52.3 40.4 43.2 43.4 38.7 27.3 29.5
D132M 4.0 65 47.3 45.9 52.3 40.4 43.2 43.4 38.7 27.3 29.5
D132M 5.5 65 47.3 45.9 52.3 40.4 43.2 43.4 38.7 27.3 29.5
D160M 7.5 70.5 52.5 47 37 50 42.5 50 46.5 35 21.5
D160L 11 70.5 52.5 47 37 50 42.5 50 46.5 35 21.5
D180L 15 76 58 42 42 51.5 57 55.5 45.5 35.5 27
D200L 18.5 76 58 50 47 51.5 55 54 52 43 29.5
D200L 22 76 58 50 47 51.5 55 54 52 43 29.5
D225M 30 79 61 59.5 56 57 60 57.5 53.5 45 38
D250S 37 75 57.5 49.5 53 57 55 52 46 34  
D250M 45 84 66.5 59 63.5 64.5 52.5 48 37.5    
D280S 55 79.5 62 54 59.5 61 58 52.5 49 45  
D280M 75                    
D315S 90                    
D315M 110 85.5 68 59.5 55.5 63.5 67.5 63.5 59.5 61.5 44
D315MX 150 87 69.5 57 58 66.5 68 65.5 59 53 50.5

Synchronous Speed: 750 r/min.

Frame
Size
Output
(kW)
Motor Sound
Motor dB
(ESCOM)
Mean Sound
Pressure
(dB) A
Noise pressure spectrum readings (dB)
at mid band frequencies (Hz) of:
63 125 250 500 1000 2000 4000 8000

D100L

0,75

69

50,7

28,3

36,3

37,7

52,9

43

35,3

20,3

12,0

D100L

1,1

69

50,7

28,3

36,3

37,7

52,9

43

35,3

20,3

12,0

D112M 1,5                    

D132S

2,2

66

47,7

32,4

44,3

32,4

48,9

38,8

34,4

30,2

15,0

D132M

3,0

66

47,7

32,4

44,3

32,4

48,9

.38,8

34,4

38,2

15,0

D160M

4,0

73

55

37

39

46

56

48,5

42,5

30,5

16,0

D160M

5,5

73

55

37

39

46

56

48,5

42,5

30,5

16,0

D160L

7,5

73

55

37

39

46

56

48,5

42,5

30,5

16,0

D180L

11

74

56

46

38,5

52,5

57

49

43

28

18

D200L

15

71,5

53,5

44,5

41

48

52,5

49

44,5

30

21

D225S 18,5                    
D225M 22                    

D250S

30

71,5

54

57

54

52

52

49

46

39,5

35,5

D250M

37

                   

D280S

45

                   

D280M

55

                   

D315S

75

                   

D315M

90

79,8

62,3

55,3

51,3

61,8

62,8

57,8

51,8

44,8

36,3

D315MX

110

                   


SLIDE RAILS

XC (Hold Dovar Bolt)

Dial

Length

8

45

10

50

12

60

16

65

20

90

24

100

Fig 93

Slide rails Dimensions in millimetres

SLIDE
RAIL (MIN)

PAIR

FOR FRAME
PER SIZE
THREAD T AL AT AU AX AY AZ
(MAX)
XA XB XD
(MAX)
XC XE XF BT KG
M9080 80 M12 355 12 10 30 105 35 45 30 8 6 325 15 95 3
  90                           80  
  100                           160  
M1310 112 M12 470 16 12 44 170 50 50 45 10 6 430 20 125 11
  132                           100  
M1816 160 M16 615 19 15 64 170 75 67 57 12 10 565 25 155 20
  180                           125  
M2220 200 M20 785 25 19 82 210 100 80 82 16 12 725 30 190 60
  225                           140  
M2825 250 M20 965 30 24 100 275 100 86 82 20 11 885 40 250 80
  280                           190  
M0031 315 M24 1215 40 28 125 355 120 110 95 24 20 1115 50 330 120
  355                              

COUPLING AND PULLEY BORES
MACHINING DETAILS

Note: Setscrew must be fitted over keyway in pulley. Couplings and pulleys sent to our works for fitting must be stamped with the GEC ref. No.

Fig 94

FRAME SIZE Bore of COUPLING PULLEY Keyway WIDTH DEPTH
D80   18.972 + 0.021 18.998 + 0.021 5.985 + 0.030 21.8 + 0.10
D90   23.972 + 0.021 23.998 + 0.021 7.982 + 0.036 27.3 + 0.20
D100 D112 27.972 + 0.021 27.996 + 0.021 7.982 + 0.036 31.3 + 0.20
D132   37.976 + 0.025 38.007 + 0.025 9982 + 0.036 41.3 + 0.20
D160 DW160 41.976 + 0.025 42.007 + 0.025 11.982 + 0.036 45.3 + 0.20
D180 DW180 47.976 + 0.025 48.007 + 0.025 13.978 + 0043 51.8 + 0.20
C160 CW160
D200 DW200        
C180 CW180 54.979 + 0.030 55.018 + 0.030 15.978 + 0.043 59.3 + 0.20
D225*          
D225 DW225 59.979 + 0.030 60.018 + 0.030 11.978 + 0.043 64.4 + 0.20
C200 CW200
D250* CW250*
D280* DW250 64.979 + 0.030 65.018 + 0.030 17.918 + 0.043 69.4 + 0.20
C225 CW225
C250* C280
D315*  
D250 C315* 69.979 + 8.030 70.018 + 0030 19.974 + 0.052 74.9 + 0.20
C250   74.979 + 0030 75.018 + 0.030 19.974 + 0.052 79.9 + 0.20
CW250 DW280
D280   79.979 + 0.030  80.018 + 0030 21.974 + 0.052 85.4 + 0.20
DW315 CW280
D315 C280 84.976 + 0.035 85.022 + 0035 21. 974 + 0.052 90.4 + 0.20
C315   89.976 + 0.035 90.022 + 0.035 24.974 + 0.050 95.4 + 0.20
D315L* CW315

* 2 POLE MOTOR