DUNLOP Belting

Conveyor Belt Design Manual

INDEX

Introduction
Dunlop Conveyor Belting Range
Belting Characteristics
Additional Features
SABS Specifications
Conveyor Belt Design
Step By Step Example of Belt Tension Calculation
  Table 1: Table of Symbols
Table 2: Material Characteristics
Table 2(a): Typical Flowability
Determination of Conveyor Capacities
  Table 3: Capacities of Troughed Belt Conveyors
Table 4: Recommended Maximum Belt Speed for Normal Use
Table 5: Recommended Idler Spacing
Table 6: Friction Factors
Table 7: Sag Factor
Table 7(a): Recommended Percentage Sag
Table 8: Estimated Belt Mass
Table 9: Typical Mass of Rotating Parts of Idlers
Table 10: Mass of Moving Parts
Table 11: Drive Factor
Conveyor Belt Selection
  Table 12: Maximum Recommended Operating Tensions
Table 13: Recommended Minimum Pulley Diameters
Table 14: Load Support
Table 15: Maximum Number of Plies Recommended for Correct Empty Belt Troughing
Table 16: Carcass Thickness
Table 17: Mass of Belt Carcass
Table 18: Mass of Covers per mm of Thickness
Rate of Wear Graph
  Table 19: Minimum Belt Top Cover Gauge Guide
Table 20: Belt Modulus
Tabulator Calculations
Sheet 1: Empty Belt
Sheet 2: Fully Loaded Belt
Sheet 3: Non-Declines Loaded
Sheet 4: Declines Loaded
Tension Tabulator
Vertical Curves
Maximum Incline Angle
Graph for Estimating Belt Length/Rolled Belt Diameter
Useful Data Conversion Factors
Conveyor Belting Design Manual

INTRODUCTION

Dunlop Africa Industrial Products is the leading designer and manufacturer of industrial rubber products in South Africa. In fact our belting systems can be seen on some highly productive plants all around the globe.

What more can you expect, when you consider that our belts have been designed and fabricated by some of the best engineers in the industry and from only the finest raw materials.

Using the most current technology, many components have taken years of refinement to attain such technological precision. And every belt is guaranteed to provide maximum performance and maximum life.

And with some 750 000 various specifications available, you can expect to find the right belt for your requirements no matter how specialised.

This manual contains all the elements, formulae and tables you need to specify the exact belt. It has been compiled for your benefit, as a quick reference book for easy selection. If however you have an application not covered in the following pages, please contact Dunlop Africa Industrial Products. A team of experienced and helpful engineers will be pleased to assist you.

Our range of excellent products, competitive pricing and impeccable service, has earned Dunlop Africa Industrial Products the reputation of being the market's first choice.

DUNLOP CONVEYOR BELTING RANGE

Dunlop Africa Industrial Products manufactures the most comprehensive range of conveyor belting in South Africa.

Multi-ply rubber covered conveyor belting

Solid woven PVC belting

Steelcord belting

Flinger belts

BELTING CHARACTERISTICS

XT Rubber Conveyor Belting (conforms to SABS 1173-1977)

Cut resistant XT Rubber Belting

Phoenix Heat Resistant Belting

Super Phoenix Heat Resistant Belting

Delta Hete Heat Resistant Belting

Fire Resistant Belting (conforms to SABS 971-1980)

Woodmaster

Rufftop Belting

Riffled Concentrator Belts

Food Quality Belting

Endless Belting

Flinger Belts

Solid Woven (PVC) Belting (conforms to SABS 971-1980)

Nitrile Covered (PVC) Belting

Steelcord Belting (conforms to SABS 1366-1982)

Fire Resistant Steelcord Belting (Conforms to SABS 1366. 1982 type F).

Oil Resistant Belting

ADDITIONAL FEATURES

  1. Rip Protector

    As an additional feature rip protection can be incorporated into the belt by means of arranging strong nylon fibres transversely or by inclusion of electronic loops. The textile rip protection can be built into the belt in 2-metre lengths at regular intervals or over the full length of the belt.

  2. Shuron Breaker Ply (XT belting)

    For applications where the lump size of the material carried is large and where adverse loading conditions exist, an open weave breaker ply can be incorporated below the top cover as an extra protection for the carcass.

  3. Chevron Breaker (XT belting)

    This incorporates steel tyre cord in a 'V shape, as a rip protection, at intervals over the belt length. Particularly recommended for XT belting where arduous conditions are experienced i.e. slag transportation.

  4. Belt Edges

    Many conveyor belts track off at some stage of their lives, causing edge damage to a greater or lesser extent. Belts can be supplied with either slit or moulded edges.

    Slit edges:
    All-synthetic constructed carcasses have good resistance to edge chafing, due to modern fibre construction In addition there is minimal penetration of moisture to the carcass and therefore no problem with carrying out hot vulcanised splices or repairs.

    Moulded edges:
    A moulded rubber edge can be provided to protect the carcass from acids, chemicals and oils. In most applications a moulded edge is unnecessary as synthetic fibres will not rot or be degraded by mildew.

SABS SPECIFICATIONS

Dunlop Africa Industrial Products conveyor belting complies with the stringent standards as laid down by the SABS.

  1. SABS 1173-1977 - General purpose textile reinforced conveyor belting.
  2. SABS 971-1980 - Fire-resistant textile reinforced conveyor belting.
  3. SABS 1366-1 982- Steelcord reinforced conveyor belting.

The above specifications cover the requirements of the various conveyor belts and are classified according to the minimum full thickness breaking strength of the finished belting in kilonewtons per metre width.

Further information regarding SABS specifications will be supplied on request.

CONVEYOR BELT DESIGN

Introduction

A conveyor belt comprises two main components:

  1. Reinforcement or a carcass which provides the tensile strength of the belt, imparts rigidity for load support and provides a means of joining the belt.
  2. An elastometric cover which protects the carcass against damage from the material being conveyed and provides a satisfactory surface for transmitting the drive power to the carcass.

In selecting the most suitable belt for a particular application, several factors have to be considered:

  1. The tensile strength of the belt carcass must be adequate to transmit the power required in conveying the material over the distance involved.
  2. The belt carcass selected must have the characteristics necessary to:
    1. provide load support for the duty.
    2. conform to the contour of the troughing idlers when empty, and
    3. flex satisfactorily around the pulleys used on the conveyor installation.
  3. The quality and gauge of cover material must be suitable to withstand the physical and chemical effects of the material conveyed.

Belt Tensions

In order to calculate the maximum belt tension and hence the strength of belt that is required, it is first necessary to calculate the effective tension. This is the force required to move the conveyor and the load it is conveying at constant speed. Since the calculation of effective tension is based on a constant speed conveyor, the forces required to move the conveyor and material are only those to overcome frictional resistance and gravitational force.

Mass of Moving Parts

For the sake of simplicity the conveyor is considered to be made up of interconnected unit length components all of equal mass. The mass of each of these units is called the mass of the moving parts and is calculated by adding the total mass of the belting, the rotating mass of all the carrying and return idlers and the rotating mass of all pulleys. This total is divided by the horizontal length of the conveyor to get the mean mass of all the components. At the outset the belt idlers and pulleys have not been selected and hence no mass for these components can be determined. Therefore the mass of the moving parts is selected from the tabulated values to be found in Table 10.

Mass of the load per unit length

As is the case with the components the load that is conveyed is considered to be evenly distributed along the length of the conveyor. Given the peak capacity in ton per hour the mass of the load per unit length is given by:

Q = 0,278 τ

    or    

Q =       τ     
S 3,600S

The effective tension is made up of 4 components

The effective tension is the sum of these four components

Te = Tx + Ty + Tz +Tu

Tx = 9,8G x fx x Lc 

Tz = 9,8Q x H

Various conveyor accessories that add resistance to belt movement are standard on most conveyors. The most common are skirtboards at the loading point and belt scrapers. Other accessories include movable trippers and belt plows.

Tension required to overcome the resistance of skirtboards Tus

Tus 9,8fs x Q x Ls
     S x b     

Tension to overcome the resistance of scrapers

Tuc = A x ρ x fc 

In the case of a belt plow the additional tension required to overcome the resistance of each plow is

Tup = 1,5W

Moving trippers require additional pulleys in the system and therefore add tension. If the mass of the additional pulleys has been included in the mass of moving parts then no additional tension is added. However, if a separate calculation of the tension to overcome the resistance of the additional pulleys is required this can be determined for each additional pulley as follows

Tut = 0,01 do x T1
    Dt     

Corrected length Lc

Short conveyors require relatively more force to overcome frictional resistance than longer conveyors and therefore an adjustment is made to the length of the conveyor used in determining the effective tension. The adjusted length is always greater than the actual horizontal length.

LC = L + 70

The length correction factor is

C =  Lc
 L 

All conveyors require an additional tension in the belt to enable the drive pulley to transmit the effective tension into the belt without slipping. This tension, termed the slack side tension T2, is induced by the take-up system. In the case of a simple horizontal conveyor the maximum belt tension T1 is the sum of the effective tension Te and the slack side tension T2

ie: T1 = Te + T2

T1 is the tight side tension and 12 is the slack side tension

For a more complex conveyor profile that is inclined, additional tensions are induced due to the mass of the belt on the slope. This tension is termed the slope tension 'h and increases the total tension.

Thus T1 = Te + T2 + Th

The slack side tension is determined by consideration of two conditions that must be met in any conveyor. The first condition is that there must be sufficient tension on the slack side to prevent belt slip on the drive. The second condition is that there must be sufficient tension to prevent excessive sag between the carrying idlers.

Minimum tension to prevent slip Tm

At the point of slipping the relationship between T1 and T2 is

T1  = eθ
T2

Since T1 = Te + T2

T2    1    Te
eθ - 1

 

The expression    1    :
eθ - 1

is called the drive factor k. and the value of T2 that will just prevent slip is referred to as the minimum to prevent slip Tm and therefore

Tm = k x Te

Minimum tension to limit belt sag Ts

The tension required to limit sag is dependent on the combined mass of belt and load, the spacing of the carry idlers and the amount of sag that is permissable.

Ts = 9,8Sf x (B + Q) x ld

The value of the slack side tension must ensure that both conditions are met and therefore T2 must be the larger of Tm or Ts.

Slope tension Th

The slope tension is the product of the belt weight and the vertical lift and has its maximum value at the highest point of the conveyor.

Th = 9,8B x H

Unit tension T

The maximum belt tension T1 has as its reference width the full width of the belt. Usually this is converted to the tension per unit of belt width as this is the reference dimension for belt strengths.

T =  T1
W

Absorbed power

The amount of power required by the conveyor is by definition of power equal to the product of the force applied and the speed at which the conveyor belt travels. The force applied is the effective tension and hence the power required at the shaft of the drive pulley/s is

P = Te x S

STEP BY STEP EXAMPLE OF BELT TENSION CALCULATION

As an example of the application of the formulae the belt tensions for the following conveyor will be determined:

Belt width 900 mm
Conveyor Length 250 m
Lift 20 m
Capacity 400 t/hr
Belt speed 1,4 m/s
Material conveyed    ROM coal
Drive 210 degree wrap. Lagged drive pulley.
Take-up Gravity
Idler spacing 1,2 m
Idler roll diameter 127 mm
1.

Determine mass of the load per unit length

Q = 

0,278  τ
S
 =  0,278 x 400

1,4

 =  79,4 kg/m
2. Look up the value of the mass of moving parts in Table 10. From the idler roll diameter and the nature of the material conveyed the application is considered as medium duty. For a 900 mm wide belt the mass of moving parts from Table 10 is 55 kg/m
3.

Calculate the corrected length and the length correction factor.

LC L + 70
= 250 + 70
= 320 m
C = LC
 L 
= 320
250
= 1,28
4.

Tension to move the empty belt.

TX 9,8G x fX x LC
= 9,8 x 55 x 0,022 x 320
= 3794 N
5.

Tension to move the load horizontally.

TX = 9,8Q x fY x LC
= 9,8 x 79,4 x 0,027 x 320
= 6723 N
6.

Tension to lift the load.

TZ = 9,8Q x H
= 9,8 x 79,4 x 20
= 15562 N
7.

No accessories are present and therefore the tension to overcome the resistance of accessories is zero.

8.

Effective tension.

Te = TX + TY + TZ + TU
= 3794 + 6723 + 15562 + 0
= 26079 N
9.

The absorbed power

P = Te x S
= 26079 x 1,4
= 36511W
10.

The slack side tension.
Slack side tension to prevent slip.
The drive factor for 210 degree wrap and lagged pulley with a gravity take-up, as given in Table 11, is 0,38.

Tm = k x Te
= 0,38 x 36079
= 9910 N

Slack side tension to limit sag to 2%. The sag factor for 2% sag is 6,3 and the estimated belt mass for a medium load and 900 mm belt width, as given in Table 8, is 11,1kg/m.

TS = 9,8Sf (B + Q) x ld
= 9,8 x 6,3 x (11,1 + 79,4) x 1,2
= 6705 N

The required slack side tension is the larger of Tm or TS and hence
T2 = 9910 N

11.

Slope tension using the estimated belt mass found in Table 8 for medium load and 900 mm belt width is:

Th = 9,8B x H
= 9,8 x 11,1 x 20
= 2176 N
12.

The maximum belt tension

T1 = Te + T2 + Th
= 26079 + 9910 + 2176
= 38165 N

The maximum belt tension is converted to the unit tension.

Effective tension.

T = T1
W
= 38165
900
= 42,4 N/mm
= 42,4 kN/m

TABLE 1 TABLE OF SYMBOLS

Symbols Description Unit   Symbol Description Unit
A Contact area of scraper blade m2 Sf Sag factor  
B Belt mass per unit length kg/m T Unit tension kN/m
b Width between skirtplates m T1 Maximum belt tension across full belt width N
Bc Edge Distance mm T2 Slack side tension N
C Length correction coefficient   Te Effective tension N
D Material Density kg/m3 Th Slope tension N
Dt Diameter of pulley t mm Tm Minimum tension to prevent slip N
do Diameter of pulley bearings mm Ts Minimum tension to limit sag N
fc Friction coefficient for scrapers   Tu Tension induced in overcoming resistance of accessories  N
fs Friction coefficient for skirtboards   Tuc Tension to overcome resistance of scrapers N
fx Friction coefficient for empty belt   Tus Tension to overcome resistance of skirtboards N
fy Friction coefficient for loaded belt   Tx Tension to move the empty belt N
G Mass of moving parts kg/m Ty Tension to move the load horizontally N
H Change in elevation along conveyor length  m Tz Tension to lift (or lower) the load N
ld Idler spacing (carry idlers) m W Belt width mm
k Drive factor   Coefficient of friction between belt and drive pulley  
L Horizontal length of conveyor m θ Angle of wrap on the drive radians radians
Lc Corrected length of conveyor m ρ Pressure of scraper on the belt N/m2
Ls Length of skirtboard m τ Belt capacity expressed in ton per hour t/hr
P Absorbed power W β Trough angle degree
Q Mass of load per unit length kg/m α Material surcharge angle degree
S Belt Speed m/s      

TABLE 2 MATERIAL CHARACTERISTICS

Material Characteristics Suggested
Grade
Bulk
Density
(t/m3)
Angle of
Surcharge
(degrees)
Max. Rec.
Conv. Slope
(degrees)
Acid phosphate MA N 0,96 10 13
Alum NA N 0,80 25 22
Alumina MA N 0,90 10 12
Aluminium sulphate NA N 0,90 20 17
Ammonium chloride MA N 0,80 10 10
Ammonium nitrate MA N 0,70 25 23
Ammonium sulphate, granular MA N 0,80 10 10
Asbestos ore or rock VA N/M 1,30 20 18
Asbestos shred MA N 0,37 30 30
Ashes, coal, dry MA N 0,60 25 23
Ashes, coal, wet MA N 0,75 25 25
Ashes, fly MA N 0,70 30 23
Ashes, gas producer, wet MA N 1,20 30 28
Asphalt NA N 1,30 30 30
Bagasse NA N/PHR 0,13 30 30
Bark, wood, refuse NA N 0,24 30 27
Barley NA N/GF 0,60 10 12
Barytes, powdered MA N 2,10 10 15
Bauxite, ground, dry VA N/M 1,10 20 18
Bauxite, mine run VA N/M 1,36 20 17
Bauxite, crushed, 75mm VA N/M 1,30 20 20
Beans NA N/GF 0,70 5 7
Beet, pulp, dry NA N/GF 0,22 30 25
Beet, pulp, wet NA N/GF 0,60 30 25
Beets, whole NA N/GF 0,76 20 20
Borax MA N 0,90 20 20
Bran NA N/GF 0,30 10 12
Brewers grain, spent, dry NA N/GF 0,45 30 27
Brewers grain, spent, wet NA N/GF 0,90 30 27
Brick VA N/M 1,76 30 27
Calcium carbide MA N 1,20 20 18
Carbon black, pelletised MA N 0,35 5 5
Carborundum 75mm VA N/M 1,60 10 15
Cashew nuts MA N/GF 0,56 30 22

Cement, portland

NA N/PHR 1,50 25 20

Cement, portland, aerated

NA N/PHR 1,06 5 10

Cement clinker

MA N/DHR 1,36 25 18

Chalk, lumpy

MA N 1,30 10 15

Chalk, 100 mesh and under

MA N 1,10 25 28
Charcoal MA N 0,35 25 22
Chrome ore HA/S N 2,10 10 17

Cinders, blast furnace

MA N/M 0,90 10 18

Cinder, coal 

MA N 0,65 20 20

Clay, calcined 

MA N 1,44 25 22

Clay, dry, fines

MA N 1,76 20 22

Clay, dry, lumpy

VA N 1,10 20 20

Coal, anthracite, 3mm and under 

NA N/PVC 0,96 20 18

Coal, anthracite, sized 

NA N/PVC 0,90 10 16

Coal, bituminous, mined 50 mesh and under 

NA N/PVC 0,83 30 24

Coal, bituminous, mined and sized 

NA N/PVC 0,80 20 16

Coal, bituminous, mined, run of mine

MA N/PVC 0,90 25 18

Coal, bituminous, mined, slack 12mm and under 

MA N/PVC 0,75 25 22

Coal, lignite 

MA N/PVC 0,75 25 22

Cocoa beans 

NA N/GF 0,56 10 12

Coke, loose 

VA N/M 0,48 30 18

Coke, petroleum, calcined 

VA N/M 0,64 20 20

Coke, breeze, 6mm and under 

VA N/M 0,48 20 22

Concrete, 100mm lumps 

VA N/M 2,10 10 18

Concrete wet 

VA N/M 2,20 24 18

Copper ore 

VA N/M 2,17 20 20

Copper sulphate 

VA N/M 1,30 20 17

Corn, ear 

NA N/GF 0,90 25 18

Corn, shelled 

NA N/GF 0,70 10 10

Cornmeal

NA N/GF 0,65 20 22

Cottonseed cake 

NA N/GF 0,67 20 20

Gullet 

HA/S M 1,60 20 20

Dolomite 

VA N/M 1,60 18 20

Earth, as dug, dry 

VA N/M 1,20 20 20

Earth, wet, with clay

MA N 1,70 30 23

Feldspar 

VA N/M 1,44 25 17

Flaxseed

MA O 0,70 10 12

Flour, wheat

NA N/GF 0,60 30 21

Fluorspar

MA N 1,70 30 20

Foundry sand, old sand cores etc.

VA M/PHR 1,36 25 20

Fullers earth, dry

MA N 0,50 10 15

Fullers earth, oily

MA O 1,00 20 20

Glass batch

HA/S M 1,44 10 22

Grain, distillery, spent dry

NA N/GF 0,48 10 15
Granite, broken, 75mm lumps VA N/M 1,44 10 18
Graphite, flake NA N 0,65 10 15

Gravel, bank run

VA N/M 1,52 25 20

Gravel, dry, sharp 

VA N/M 1,52 20 16

Gravel, pebbles 

VA N/M 1,52 10 12

Gypsum, dust, not-aerated 

MA N 1,50 20 20

Gypsum, dust, aerated 

MA N 1,04 30 23

Gypsum, 12mm screened 

MA N 1,20 25 21

Gypsum, 75mm lumps 

MA N 1,20 10 15

Illmenite ore 

MA N 2,40 10 18

Iron ore, coarse crushed 

VA N/M 3,00 20 18

Iron ore, crushed fine 

VA N/M 3,50 20 18

Kaolin clay, 75mm and under

MA N 1,00 20 19

Lead ores 

MA N 3,80 10 15

Lead oxide, heavy 

MA N 2,40 25 20

Lead oxide, light 

MA N 1,20 25 20

Lignite, air dried 

MA N 0,80 10 18

Lime, ground, 3mm and under 

NA N 1,00 30 23

Lime, hydrated 

NA N 0,60 25 21

Lime, pebble 

MA N 0,90 10 17

Limestone, agricultural 3mm and under 

MA N 1,10 10 20

Limestone, crushed

MA N 1,40 25 18

Linseed cake 

NA OR/PVC 0,80 20 15

Linseed meal

NA OR/PVC 0,43 20 20

Litharge, pulverized (lead oxide) 

MA N 3,60 10 15

Magnesium chloride 

MA N 0,53 30 23

Magnesium sulphate 

MA N 1,10 10 15

Manganese ore

VA N/M 2,15 25 20

Manganese sulphate 

MA N 1,10 10 15

Marble, crushed 12mm and under

VA N/M 1,40 10 15

Mica, ground 

MA N 0,22 20 23

Mica, pulverized 

MA N 0,22 10 15

Mica, flakes 

MA N 0,32 5 8

Molybdenite, powdered 

MA N 1,70 20 25

Mortar, wet 

VA N/M 2,20 24 18

Nickel-cobalt 

VA N/M 1,80 10 20

Oats 

NA GF/PVC 0,42 10 10

Peanuts in shells 

NA N 0,27 10 8

Peanuts, shelled 

NA GF/PVC 0,65 10 8

Peas, dried 

NA GF/PVC 0,75 5 8
Phosphate, triple super ground fertilizer MA N/OR/PVC 0,80 20 18
Phosphate rock, broken, dry VA N/M 2,00 20 18

Phosphate rock, pulverized

VA N/M 2,10 25 18

Potash ore 

MA N 1,30 10 15

Pumice, 3 mm and under 

MA N 0,67 30 22

Pyrites, iron, 50 - 75mm in lumps 

VA N/M 2,25 20 17

Pyrites, pellets 

VA N/M 2,00 10 15

Quartz 

HA/S N/M 1,36 10 15

Rice 

NA GF/PVC 0,65 5 8

Rock, crushed

HA/S N/M 2,15 20 18

Rubber, pelletised

MA N 0,80 20 22

Rubber, reclaim

NA N 0,45 20 18

Rye

NA GF/PVC 0,70 10 8

Salt, common dry, coarse

MA N/GF/PVC 0,75 10 20

Salt, common dry, fine

MA GF/PVC 1,20 10 11

Sand, bank, damp 

VA N/M 1,90 30 22

Sand, bank, dry

VA N/M 1,60 20 18

Sand, foundry, prepared

VA N/M 1,36 30 24

Sand, foundry, shakeout

VA N/M/PHR 1,50 25 22

Sand, Silica, dry

VA N/M 1,50 10 12

Sand, core

VA N/M 1,04 25 26

Sandstone, broken

VA N/M 1,44 20 20

Sawdust

NA N/OR/PVC/W 0,20 25 22

Shale, broken

MA N 1,50 10 18

Shale, crushed

MA N 1,40 25 22

Sinter

VA N/M/PHR 1,80 10 15

Slag, blast furnace, crushed

VA M/PHR/DHR 1,36 10 10

Slag, furnace, granular, dry

VA M/PHR/DHR 1,00 10 15

Slag, furnace, granular, wet

VA N/M 1,50 30 22

Slate

MA N 1,36 20 18

Soap, beads or granules

NA N/PVC 0,32 10 12

Soap, chips

NA N/PVC 0,32 10 18

Soda ash, briquettes

MA N 0,80 10 7

Soda ash, heavy

MA N 0,96 20 18

Soda ash, light

MA N 0,43 25 22

Sodium nitrate

MA N 1,20 10 11

Sodium phosphate

MA N 0,90 10 16

Soyabeans, cracked

NA GF/PVC 0,56 20 18

Soyabeans, whole

NA GF/PVC 0,77 10 14

Starch

NA GF 0,60 10 12

Steel trimmings

HA/S M 2,40 20 18

Sugar, granulated

NA GF 0,83 10 15

Sugar, raw, cane

MA N 0,96 20 22

Sulphate powdered

MA N 0,90 10 21

Talc, powdered

NA N 0,90 10 12

Titanium ore

VA N/M 2,40 10 18

Titanium sponge

MA N 1,04 30 25

Traprock

VA N/M 1,60 20 18

Triple super phosphate

MA N/OR/PVC 0,80 20 18

Vermiculite, expanded

MA N 0,25 20 23

Vermiculite, ore

MA N 1,20 20 20

Walnut shells, crushed

NA GF 0,65 20 20

Wheat

NA N/GF/PVC 0,77 10 12

Woodchips

NA OR/W 0,32 30 27

Zinc ore, crushed

HA/S M 2,60 25 22

Zinc ore, roasted

HA/S SPHR/DHR 1,76 25 25

Characteristics

Key: HA/S - Highly abrasive/sharp
  MA - Mildly abrasive
  NA - Non-abrasive
  VA - Very abrasive

Cover Grade

Code: N - SASS 1173 NH polyisoprine
  M - Higher natural rubber content SASS 1173
  OR - Oil resistant
  GF - Grey Food
  PHR - Phoenix Heat Resistant
  SPHR - Super Phoenix heat resistant
  W - Wood master
  DHR - Delta Hete heat resistant
  PVC - Polyvinylchloride
  FR - Fire resistant SASS 971

TABLE 2(a) TYPICAL FLOWABILITY

Angle of
Surcharge α
Angle of
Repose
Material Characteristics
0° - 19° Uniform Size
10° 20° - 29° Rounded, dry ,medium weight
20° 30° - 34° Granular lumpy (Coal, Clay)
25° 35° - 39° Coal, stone, ores
30° 40° - 45° Irregular (wood chips)

Determination of Conveyor Capacities

The capacity of a troughed belt is a function of:

  1. The cross sectional area of the load which can be carried without spillage.
  2. The belt speed.
  3. The material density.

The cross sectional area is influenced by many factors including the flowability of the material, the angle of surcharge and the incline angle at the load point of the conveyor. To achieve optimum load area the loading chutes must be designed to ensure the most advantageous initial load shape and this can only be achieved if:

  1. The load is placed centrally on the belt.
  2. The material is delivered in the direction of belt travel and at a speed approaching that of the belt.
  3. The angle of incline at the load area must be less than 1 ~O,

To ensure that the optimum load shape is maintained along the entire belt length:

  1. The idler pitch should be such as to limit sag to acceptable levels.
  2. The belt must be trained properly.
  3. The lump size in relation to belt width must be within the recommended limits.
  4. The belt must give adequate support to the load.

Under ideal conditions the cross sectional load area is:

At = (Ab + As) / 106

Where

Ab = (0,371W + 6,3 + M x cosβ) (M x sinβ)

As ( 0,186W + 3,2 + M x cosβ )2 ( πα  -  sin2α )
sinα 180 2

M = 0,3145W - 3,2 - Bc

W - Belt width (mm)
Bc- Edge distance (mm)
β - Iroughing angle (degree)
α - Material surcharge angle (degree)
At - Cross sectional load area (m2)

The belt capacity in ton/hour is
Capacity = 3,6At x D x S

Where

D - Material Density (kg/m3)
S - Belt speed (m/s)

TABLE 3 CAPACITIES OF TROUGHED BELT CONVEYORS IN TON/HOUR

Belt
Width
mm
Recommended
Max. Lump Size
Trough
Angle
Degrees
Area of
Load
m2
Speed m/s
Sized
mm
Unsized
mm
0,5 0,8 1,2 1,6 2,0 2,5 3,0
600 125 200 20 0,033 59 95 142 190 236 297 357
27 0,037 66 106 160 213 266 333 400
30 0,038 69 110 164 218 274 342 410
35 0,040 72 115 173 230 288 360 432
45 0,042 76 121 181 242 303 378 436
750 150 250 20 0,054 97 156 233 311 389 486 583
27 0,060 109 173 259 346 432 540 648
30 0,062 112 179 268 357 446 558 670
35 0,065 117 187 281 375 468 585 702
45 0,068 122 196 294 392 490 612 734
900 175 300 20 0,080 144 230 346 461 576 720 864
27 0,090 162 259 389 518 648 810 972
30 0,092 166 265 397 530 662 828 994
35 0,096 173 276 415 553 691 864 1037
45 0,101 182 291 436 582 727 909 1091
1050 200 350 20 0,111 200 320 480 639 799 1000 1199
27 0,124 223 357 536 714 839 1116 1339
30 0,128 230 369 553 737 922 1152 1382
35 0,134 241 386 579 772 965 1206 1447
45 0,140 252 403 605 806 1008 1260 1512
1200 250 400 20 0,147 265 423 635 847 1058 1323 1588
27 0,165 297 475 713 950 1188 1485 1782
30 0,170 306 490 734 979 1224 1530 1836
35 0,178 320 513 769 1025 1282 1602 1922
45 0,186 335 536 804 1071 1339 1674 2009
1350 275 500 20 0,189 340 544 816 1089 1361 1701 2041
27 0,211 380 608 912 1215 1519 1899 2279
30 0,217 391 625 937 1250 1562 1953 2344
35 0,227 409 654 981 1308 1634 2043 2452
45 0,238 428 685 1028 1371 1714 2142 2570
1500 300 600 20 0,235 423 676 1015 1357 1692 2115 2538
27 0,263 473 757 1136 1515 1894 2367 2840
30 0,271 488 780 1171 1561 1951 2439 2927
35 0,283 509 815 1223 1630 2038 2547 3056
45 0,296 533 852 1279 1905 2131 2664 3197
1650 350 700 20 0,286 515 824 1236 1649 2059 2574 3089
27 0,321 578 924 1387 1849 2311 2889 3467
30 0,330 594 950 1426 1901 2367 2970 3564
35 0,345 621 994 1490 1987 2484 3105 3726
45 0,361 650 1040 1560 2079 2599 3249 3899
1800 350 700 20 0,343 617 988 1482 1976 2470 3087 3704
27 0,384 691 1106 1659 2212 2765 3456 4147
30 0,395 711 1138 1706 2275 2844 3555 4266
35 0,413 743 1189 1784 2379 2976 3717 4460
45 0,432 778 1244 1866 2488 3110 3888 4666
2100 350 700 20 0,472 850 1359 2039 2719 3398 4248 5098
27 0,528 950 1521 2281 3041 3802 4752 5702
30 0,543 977 1564 2346 3128 3910 4887 5864
35 0,568 1022 1636 2454 3272 4090 5112 6134
45 0,594 1069 1711 2566 3421 4277 5346 6415
2200 350 700 20 0,519 934 1495 2245 2989 3737 4671 6505
27 0,581 1046 1673 2510 3347 4183 5229 6275
30 0,598 1076 1722 2583 3444 4306 5382 6458
35 0,625 1125 1800 2700 3600 4500 5625 6750
45 0,654 1161 1858 2786 3715 4644 5805 6966

TABLE 4 RECOMMENDED MAXIMUM BELT SPEEDS FOR NORMAL USE (METRES PER SECOND)*

Belt Width
(mm)
Grain or Other
Free Flowing Material
Run of Mine
Coal and Earth +
Hard Ores and Stone -
Primary Crushed ++
300 2,5 1,5 1,5
400 2,5 2,0 1,8
500 3,0 2,0 1,8
600 3,0 2,5 2,3
750 3,6 3,0 2,8
900 4,0 3,3 3,0
1050 4,0 3,6 3,0
1200 4,6 3,6 3,3
1350 5,0 3,6 3,3
1500 5,0 3,6 3,3
1800   4,0 3,8
2000 and over   4,0 3,8

* These speeds are intended as guides to general practice and are not absolute.
+ Moderately abrasive materials.
++ Very abrasive materials.

Note: In the case of belts loaded on inclines of 100 or more it may be necessary to reduce the above speeds in order to achieve maximum capacity.

TABLE 5 RECOMMENDED IDLER SPACING

Belt Width
(mm)
Troughing Idler - (m) Return Idlers
(m)
Bulk Density of Material (t/m3)
0,5 0,8 1,2 1,6 2,0 2,5 3,0
450 1,5 1,5 1,5 1,4 1,4 1,4 1,4 3
600 1,5 1,5 1,5 1,4 1,4 1,2 1,2 3
750 1,5 1,4 1,4 1,2 1,2 1,2 1,0 3
900 1,4 1,4 1,2 1,2 1,0 1,0 1,0 3
1050 1,2 1,2 1,0 1,0 1,0 1,0 0,9 3
1200 1,2 1,2 1,0 1,0 1,0 0,9 0,9 3
1350 1,2 1,0 1,0 1,0 0,9 0,9 0,9 3
1500 1,2 1,0 1,0 1,0 0,9 0,9 0,9 3
1650 1,2 1,0 1,0 0,9 0,9 0,9 0,9 3
1800 1,2 1,0 1,0 0,9 0,9 0,9 0,8 3
2000 and over 1,0 1,0 0,9 0,9 0,9 0,8 0,8 3

TABLE 6 FRICTION FACTORS

Symbol Description Value of the friction factor
Normal operating
conditions.
Horizontal length
up to
250 meters.
Normal operating
conditions.
Horizontal length
more than
250 meters.
Very well aligned
structure with no
tilted idlers etc.
Horizontal length
more than
500 meters.
Regenerative
conveyor.
fC Friction coefficient for scrapers 0,600 0,600 0,600 0,600
fS Friction coefficient for skirtboards 0,650 0,650 0,650 0,650
fX Friction coefficient for empty belt 0,022 0,020 0,020 0,018
fY Friction coefficient for loaded belt 0,027 0,022 0,020 0,018

TABLE 7 SAG FACTOR

Percentage
Sag
Sag Factor
Sf
3% 4,2
2% 6,3
1,5% 8,4

TABLE 7(a) RECOMMENDED PERCENTAGE SAG

Trough Angle
(degree)
Fine
Material
Lumps up to
max lump size
Max Lump
Size
20 3% 3% 3%
35 3% 2% 2%
45 3% 2% 1,5%

TABLE 8 ESTIMATED BELT MASS B

Belt Width
(mm)
Operating Conditions
Light Duty
(kg/m)
Medium Duty
(kg/m)
Heavy Duty
(kg/m)
500 4,1 6,2 10,3
600 5,0 7,4 12,3
750 6,2 9,3 15,5
900 7,4 11,1 18,5
1050 8,6 13,0 21,6
1200 9,8 14,8 24,7
1350 11,0 16,7 27,8
1500 12,3 18,6 30,9
1650 13,5 20,5 33,9
1800 14,7 22,3 37,0
2100 17,2 26,0 43,3
2200 18,0 27,3 45,3

Note:

The values given in the table are estimated values for use in the calculation of maximum belt operating tension necessary to make the correct belt selection. When the belt specification has been determined, the mass should be checked more accurately from Table 17. If the actual mass of the specification differs considerably from the approximate value obtained from the table the tension calculation should be rechecked using the more accurate belt mass.

TABLE 9 TYPICAL MASS OF ROTATING PARTS OF IDLERS (kg/m)

Belt Width 3 Roll Carry Idlers Return Idlers 3 Roll Impact Idlers
Roll Dia Roll Dia Roll Dia
102 127 152 102 127 152 133 159
450 8,0 10,5 13,1 6,0 7,7 9,4 8,8 11,5
500 8,5 11,1 13,9 6,5 8,4 10,1 9,3 12,2
600 9,5 12,4 15,4 7,5 9,6 11,6 10,4 13,6
750 11,0 14,2 17,6 9,0 11,4 13,9 12,1 15,6
900 12,5 16,1 19,9 10,6 13,3 16,1 13,8 17,7
1050 14,0 18,0 22,2 12,1 15,2 18,4 15,4 18,8
1200 15,5 19,9 24,4 13,6 17,1 20,6 17,1 21,9
1350 17,0 21,8 26,6 15,1 19,0 22,9 18,7 24,0
1500 18,5 23,6 28,9 16,6 20,8 25,1 20,3 26,0
1650 20,0 25,5 31,2 18,1 22,7 27,4 22,0 28,9
1800 21,6 27,4 33,4 19,6 25,6 29,6 23,8 30,1
2100 24,6 31,2 37,9 22,6 28,4 34,2 27,1 34,3
2200 25,6 32,4 39,4 23,6 29,6 35,7 28,2 35,6
2400 27,6 34,9 42,4 25,7 32,1 38,7 30,4 38,4

TABLE 10 MASS OF MOVING PARTS G

Belt Width
(mm)
Mass of Moving Parts (kg/m)
Light Duty
102mm Idlers
Light Belt
Medium Duty
127mm Idlers
Moderate Belt
Heavy Duty
152mm Idlers
Heavy Belt
Extra Heavy Duty
152mm Idlers
Steel Cord Belt
450 23 25 33  
600 29 36 45 49
750 37 46 57 63
900 45 55 70 79
1050 52 64 82 94
1200 63 71 95 110
1350 70 82 107 127
1500   91 121 143
1650   100 132 160
1800     144 178
2100     168 205
2200     177 219

NEXT PAGE ->>